CHARACTERIZATIONS OF PARTITION LATTICES

YOUNG-JIN YOON

I. Introduction

One of the most well-known geometric lattices is a partition lattice. Every upper interval of a partition lattice is a partition lattice. The Whitney numbers of the partition lattices are the Stirling numbers, and the characteristic polynomial is a falling factorial. The set of partitions with a single non-trivial block containing a fixed element is a Boolean sublattice of modular elements, so the partition lattice is supersolvable in the sense of Stanley [6].

In this paper, we rephrase four results due to Heller [1] and Murty [4] in terms of matroids and give several characterizations of partition lattices.

Our notation and terminology follow those in [8, 9]. To clarify our terminology, let \(G \) be a finite geometric lattice. If \(S \) is the set of points (or rank-one flats) in \(G \), the lattice structure of \(G \) induces the structure of a (combinatorial) geometry, also denoted by \(G \), on \(S \). The size \(|G|\) of the geometry \(G \) is the number of points in \(G \). Let \(T \) be a subset of \(S \). The deletion of \(T \) from \(G \) is the geometry on the point set \(S \setminus T \) obtained by restricting \(G \) to the subset \(S \setminus T \). The contraction \(G/T \) of \(G \) by \(T \) is the geometry induced by the geometric lattice \([cl(T), \hat{1}]\) on the set \(S' \) of all flats in \(G \) covering \(cl(T) \). (Here, \(cl(T) \) is the closure of \(T \), and \(\hat{1} \) is the maximum of the lattice \(G \).) Thus, by definition, the contraction of a geometry is always a geometry. A geometry which can be obtained from \(G \) by deletions and contractions is called a minor of \(G \).

2. Preliminaries

Let \(S \) be a finite set of \(n \) elements. A partition \(\pi \) of \(S \) is a family of disjoint subsets \(B_1, B_2, \ldots, B_k \), called blocks, whose union is \(S \). There is a natural
ordering of partitions, which is defined as follows: \(\pi \leq \sigma \) whenever every block of a partition \(\pi \) is contained in a block of a partition \(\sigma \). Denote the lattice of partitions of a set with \(n \) elements by \(P_n \). We call \(P_n \) the \textit{partition lattice} of rank \(n - 1 \).

Let \(G \) be a geometry. Then we can associate with \(G \) a geometric lattice \(\mathcal{L}(G) \) whose elements are the flats of \(G \) ordered by inclusion. Note that the partition lattice \(P_n \) is isomorphic to the lattice of flats of the polygon matroid of the complete graph \(K_n \).

Theorem 1 [1]. Let \(G \) be a binary geometry of rank \(n \) and let \(a \) be a point in \(G \). If \(|G| - |G/a| > n \), then \(G \) contains the Fano plane as a minor.

Corollary 1 [1, 4]. A binary rank-\(n \) geometry not containing the Fano plane as a minor contains at most \(\binom{n+1}{2} \) points.

As a contrapositive of Corollary 1, we have the following.

Corollary 2 [1, 4]. If a binary geometry of rank \(n \) has more than \(\binom{n+1}{2} \) points, then it contains the Fano plane as a minor.

Theorem 2 [1, 4]. If a binary rank-\(n \) geometry \(G \) not containing the Fano plane as a minor contains \(\binom{n+1}{2} \) points, then \(G \) is the polygon matroid of the complete graph \(K_{n+1} \); that is, \(\mathcal{L}(G) \cong P_{n+1} \).

Theorem 3. If a geometry \(G \) has \(\binom{n+1}{2} \) points and \(\mathcal{L}(G/a) \cong P_n \) for every point \(a \) in \(G \), then \(\mathcal{L}(G) \cong P_{n+1} \).

Proof. Note that \(G \) has rank \(n \). Since \(\mathcal{L}(G/a) \cong P_n \) for every point \(a \) in \(G \), the scum theorem [9, p.240] implies that \(G \) is binary. For \(n = 1 \) and \(n = 2 \), the theorem is true.

Let \(n = 3 \). If \(G \) contains the Fano plane as a minor, then \(G \) is isomorphic to the Fano plane. But \(G \) and the Fano plane have a different number of points, so we have a contradiction. Thus \(G \) cannot contain the Fano plane as a minor. By Theorem 2, we have \(\mathcal{L}(G) \cong P_4 \).

Let \(n \geq 4 \). If \(G \) contains the Fano plane as a minor, then by the scum theorem \(G/a \) contains the Fano plane as a minor for some point \(a \) in \(G \). Since
Characterizations of partition lattices

$L(G/a) \cong P_n$, the polygon matroid of the complete graph K_n contains the Fano plane as a minor. But this is contradictory to [10, Theorem 1.5.4.]. Thus G cannot contain the Fano plane as a minor. By Theorem 2, we have $L(G) \cong P_{n+1}$.

Kahn and Kung [3] defined splitting in geometries. Let G be a geometry. Then G splits if G is the union of two of its proper flats. G is said to be non-splitting otherwise. We shall be more concerned with non-splitting geometries. An example of a non-splitting geometry is $M(K_n)$, the polygon matroid of the complete graph K_n on n vertices.

A geometry G is said to be upper homogeneous if for $k = 1, 2, \ldots, r(G)$, $G/x \cong G/y$ for every pairs x, y of flats of rank k.

Lemma 1. If a geometry G is upper homogeneous, has a modular copoint, and $|G| > r(G)$, then G is non-splitting.

Proof. It suffices to show that if a geometry G is upper homogeneous and has a modular copoint and is splitting, then $|G| = r(G)$.

Use induction on $n = r(G)$. For $n = 1, 2$, the lemma is true. Assume it holds for a geometry of rank less than n. Let a be a point in G.

Suppose that G/a is non-splitting. Since G is splitting, we have $G = A \cup B$ where A and B are proper flats of G. Assume to the contrary that $A \cap B = \emptyset$. Let x be a modular copoint of G. Then x is splitting, i.e. $x = (A \cap x) \cup (B \cap x)$ where $A \cap x$ and $B \cap x$ are proper flats of x. Since x is isomorphic to G/a and G/a is non-splitting, we have a contradiction. Thus $A \cap B \neq \emptyset$. Since $G/c = (A/c) \cup (B/c)$ for a point c in $A \cap B$, it follows that G/c is splitting. Since G is upper homogeneous, we have a contradiction. Thus G/a is splitting.

Note that G/a is upper homogeneous and has a modular copoint. By the induction hypothesis, we have $|G/a| = r(G/a)$, i.e. G/a is a Boolean algebra. Since G/a is a Boolean algebra for every point a in G, Theorem [2, p.89] and the scum theorem implies that G is a Boolean algebra, i.e. $|G| = r(G)$.

Lemma 2. The following statements are equivalent.

1. G is non-splitting
2. If x is a copoint of G, then $G \setminus x$ contains a basis.
Proof. (1) \(\implies\) (2): Suppose that \(G \setminus x\) does not contain a basis. Then \(cl(G \setminus x)\) is a proper flat and \(G = x \cup cl(G \setminus x)\).

(2) \(\implies\) (1): Suppose that \(G\) is splitting. Let \(G = A \cup B\) where \(A\) and \(B\) are proper flats of \(G\). Let \(\alpha\) be a copoint of \(A\) containing \(A \cap B\) and let \(x = \alpha \cup B\) be a copoint of \(G\). Then \(G \setminus x\) is contained in \(A\). Since \(A\) is a proper flat, \(A\) does not contain a basis. Thus \(G \setminus x\) does not contain a basis.

Stonesifer and Bogart [7] proved the following theorem in terms of geometric lattices. Here we prove this by the previous results.

Theorem 4. If a geometry \(G\) has a modular copoint and \(L(G/a) \cong P_n\) for every point \(a\) in \(G\), then \(L(G) \cong P_{n+1}\) for \(n \geq 4\).

Proof. By Theorem 3, it suffices to show that \(|G| = \binom{n + 1}{2}\). Let \(x\) be a modular copoint in \(G\). Then the interval \([0, x]\) is isomorphic to \(L(G/a)\) for a point \(a\) not in \(x\). Thus \(|x| = |G/a| = |P_n| = \binom{n}{2}\). Since \(G\) contains no 4-point line as a minor by the scum theorem, \(G\) is binary. Also, since \(x\) is a modular copoint, no 2-point line is contained in \(G \setminus x\). If a line \(\ell\) is not in \(x\), then \(r(x \cap \ell) = r(x) + r(\ell) - r(x \cup \ell) = (n - 1) + 2 - n = 1\). It implies that every 3-point line (in \(G\)) not in \(x\) contains one point in \(x\).

Let \(|G \setminus x| = k\). Since \(G\) has a modular copoint and is upper homogeneous and \(|G| > |G/a| = \binom{n}{2}\) \(\geq n\) for \(n \geq 4\), by Lemma 1 and Lemma 2, we have \(k \geq n\). If \(|G| - |G/a| = k > n\), then Theorem 1 implies that \(G\) contains the Fano plane as a minor. But for \(n \geq 4\), \(G\) cannot contain the Fano plane as a minor by the scum theorem. Thus \(k = n\) and \(|G| = \binom{n + 1}{2}\).

Let \(p(G; \lambda)\) be the characteristic polynomial of a geometry \(G\). Then we have

\[
p(P_{n+1}; \lambda) = (\lambda - 1)(\lambda - 2) \ldots (\lambda - n).
\]

In the next section, we characterize the partition lattice in terms of its characteristic polynomial and some additional conditions.
3. Main theorems

Theorem 5. If a geometry G is upper homogeneous, has a modular copoint, and $p(G; \lambda) = (\lambda - 1)(\lambda - 2) \ldots (\lambda - n)$, then $L(G) \cong P_{n+1}$.

Proof. Induction on n. For $n = 1, 2$, the theorem is true. Assume that it holds for a geometry of rank less than n.

Let x be a modular copoint of G. By Lemma 1 and Lemma 2, we have $|G \setminus x| \geq n$. Since G is modular, by the modular factorization theorem [5, Theorem 2], we have $|G \setminus x| \leq n$. Thus $|G \setminus x| = n$ and $p(x; \lambda) = (\lambda - 1)(\lambda - 2) \ldots (\lambda - n + 1)$. Since $[0, x]$ is isomorphic to $L(G/a)$ for some point a not in x and G is upper homogeneous, we have $p(G/a; \lambda) = (\lambda - 1)(\lambda - 2) \ldots (\lambda - n + 1)$ for every point a in G. Note that G/a is upper homogeneous for every point a in G. Since x/b is a modular copoint of G/b for a point b in x, it follows that G/a has a modular copoint for every point a in G. By the induction hypothesis, $L(G/a) \cong P_n$ for every point a in G. Thus Theorem 4 implies $L(G) \cong P_{n+1}$.

Theorem 6. If a geometry G is non-splitting, supersolvable, and $p(G; \lambda) = (\lambda - 1)(\lambda - 2) \ldots (\lambda - n)$, then $L(G) \cong P_{n+1}$.

Proof. We induct on the rank n of a geometry G. For $n \leq 3$, the theorem is true. Assume it holds for a geometry of rank less than n.

Let x be a modular copoint in a maximal chain of flats. Then we have $|G \setminus x| \leq n$. Since G is non-splitting, Lemma 2 gives $|G \setminus x| \geq n$. Thus $|G \setminus x| = n$. By the modular factorization theorem, we have $p(x; \lambda) = (\lambda - 1)(\lambda - 2) \ldots (\lambda - n + 1)$. Suppose that x is splitting. Let $x = A \cup B$ where A and B are proper flats of x. Since $L(G/a) \cong [0, x]$ for a point a not in x, it follows that $G \cong \text{cl}(A \cup a) \cup \text{cl}(B \cup a)$ and so G is splitting, a contradiction. Thus x is non-splitting.

Now x satisfies all the conditions of the theorem. By the induction hypothesis, we have $L(x) \cong P_n$. Note that $G \setminus x$ is exactly a basis of G. Since x is a modular copoint with $|x| = \binom{n}{2}$, every two points of $G \setminus x$ is connected to a unique point in x by a 3-point line. Therefore $L(G) \cong P_{n+1}$.
ACKNOWLEDGEMENT. This paper is based on my Ph.D. thesis at University of North Texas. I would like to thank Professor Joseph P. S. Kung for his encouragement and helpful suggestions.

References