A NOTE ON NULL DESIGNS
OF DUAL POLAR SPACES

Soojin Cho

Abstract. Null designs on the poset of dual polar spaces are considered. A poset of dual polar spaces is the set of isotropic subspaces of a finite vector space equipped with a nondegenerate bilinear form, ordered by inclusion. We show that the minimum number of isotropic subspaces to construct a nonzero null t-design is $\prod_{i=0}^{t}(1 + q^i)$ for the types B_N, D_N, whereas for the case of type C_N, more isotropic subspaces are needed.

1. Introduction

Null designs are defined on ranked partially ordered sets. Let P be a finite ranked partially ordered set. Given two ranks of P, $t \leq k$, we can form a 0,1 matrix, called an adjacency matrix, with columns indexed by the elements of rank k and the rows indexed by the elements of rank t. The kernel of this adjacency matrix forms a space of very interesting objects called null (t, k)-designs [8]. The poset of dual polar spaces of a given type is the set of isotropic subspaces of a finite vector space equipped with the nondegenerate bilinear form of the corresponding type, ordered by inclusion. In this paper, we consider the space of null (t, k)-designs of posets of dual polar spaces of type B_N, C_N and D_N [2], [12], [13]. Note that the corresponding Chevalley group has a natural action on the space of null (t, k)-designs, that is, the space of null (t, k)-designs forms a representation of the corresponding Chevalley group. These representations are considered in [12].

We are especially interested in the number of nonzero entries, called the support size, of nonzero null t-designs. P. Frankl and J. Pach [7]
proved that the minimum support size of non-zero null t-designs is 2^{t+1} for the Boolean algebras, and the minimal null designs are characterized for some special cases [4], [10]. It is proved that $\prod_{i=0}^{t}(1 + q^{i})$ is the minimum support size of non-zero null t-designs of the lattices of subspaces of a finite vector space in [6], when $k = t + 1$, and the minimal null designs are characterized in [5]. Moreover, there is a general theorem which gives a lower bound for the minimum support size of non-zero null t-designs [4]. In this article, we apply known theorems on the support size of non-zero null t-designs to the poset of dual polar spaces of type B_N, C_N and D_N. In Section 2, we state some known theorems on the number of elements needed to construct a nonzero null design. In Section 3, we apply the results in Section 2 to the posets of dual polar spaces of type B_N, C_N and D_N.

2. Preliminaries

In this section, we give basic definitions and state some known theorems.

For a finite set X, we let $\mathbb{R}[X] = \{ \sum_{x \in X} c_x x : c_x \in \mathbb{R} \}$ denote the vector space over the real field \mathbb{R} with a basis X. If P is a finite ranked partially ordered set, then we let X_i^P be the set of elements of rank i of P and define the linear map $d_{i,j}^P : \mathbb{R}[X_i^P] \to \mathbb{R}[X_j^P]$, $j \leq i$, as follows;

$$d_{i,j}^P(x) = \sum_{y \leq x \in X_j^P} y.$$

For integers $0 \leq t < k$, null (t, k)-design of a finite ranked poset P is an element of the kernel of $d_{k,t}^P$. We will use $N_P(t, k)$ for the vector space of null (t, k)-designs of P.

For a finite ranked poset P, we say that P satisfies the downmap condition, if the following condition is satisfied;

$$\text{for all } t < k, \quad d_{k,t}^P(x) = 0 \quad \text{implies} \quad d_{k,t'}^P(x) = 0 \quad \text{if } t' \leq t.$$

For an element $\omega \in \mathbb{R}[X]$ and $x \in X$, $c_\omega(x)$ is the coefficient of x in ω and the support of ω is the set $\text{Supp}(\omega) = \{ x \in X | c_\omega(x) \neq 0 \}$. A minimal null design is a nonzero null design with the minimum support size. In the following propositions, we suppose that P is a finite ranked meet semilattice with the downmap condition, where μ_P denote the Möbius function defined on P, and for $x, y \in P$, $x \wedge y$ is the meet of x and y. We refer to [11] for the definitions of the meet semilattice and the Möbius
function. The following propositions provide general rules to find the minimum support size of nonzero null \(t \)-designs and to characterise the minimum null \(t \)-designs, whose proofs are in [6].

Proposition 1. If \(\omega \in N_P(t, t+1) \), \(\omega \neq 0 \), then
\[
|\text{Supp}(\omega)| \geq \min_{y \in X_{t+1}^P} \left(\sum_{z \leq y} |\mu_P(z, y)| \right).
\]

Proposition 2. If the lower bound in Proposition 1 gives the tight bound, then the coefficients of a nonzero minimal null design in \(N_P(t, t+1) \) are \(\pm c \) or 0 for some nonzero constant \(c \in \mathbb{R} \). Moreover, if \(\omega \in N_P(t, t+1) \) is a minimal null design, then for each \(y \in \text{Supp}(\omega) \) and \(z \leq y \), there must be exactly \(|\mu_P(z,y)| \) many \(x \in \text{Supp}(\omega) \) such that \(x \land y = z \) and \(c_\omega(x) = \text{sign}(\mu_P(z,y))c_\omega(y) \).

3. Null designs of dual polar spaces

In this section, we apply the propositions stated in Section 2 to the lattice of subspaces of a finite vector space and to posets of dual polar spaces. We first define posets of isotropic spaces with respect to nondegenerate bilinear form of types \(B_N, C_N, \) and \(D_N \) (see [1],[3]). Let \(q \) be a power of a prime number, and each vector space has the Galois field \(\mathbb{F}_q \) as its base field.

Definition 3. (1) A \((2N + 1)\)-dimensional vector space \(V_N \) over \(\mathbb{F}_q \) is of type \(B_N \), if it has a basis \(\{e_1, \ldots, e_N, e_{-1}, \ldots, e_{-N}, e_0\} \) with a symmetric bilinear form \(B \), whose Gram matrix is
\[
\begin{bmatrix}
0 & I_N & 0 \\
I_N & 0 & \\
0 & \ldots & 1
\end{bmatrix}.
\]

(2) A \(2N\)-dimensional vector space \(V_N \) over \(\mathbb{F}_q \) is of type \(C_N \), if it has a basis \(\{e_1, \ldots, e_N, e_{-1}, \ldots, e_{-N}\} \) with a skew symmetric bilinear form \(B \), whose Gram matrix is
\[
\begin{bmatrix}
0 & \ I_N \\
-\ I_N & 0
\end{bmatrix}.
\]

(3) A \(2N\)-dimensional vector space \(V_N \) over \(\mathbb{F}_q \) is of type \(D_N \), if it has a basis \(\{e_1, \ldots, e_N, e_{-1}, \ldots, e_{-N}\} \) with a symmetric bilinear form \(B \),
whose Gram matrix is
\[
\begin{bmatrix}
0 & I_N \\
I_N & 0
\end{bmatrix}.
\]

Definition 4. For each type of vector spaces V_N defined in Definition 3, define a poset as the set of isotropic subspaces of V_N with respect to the given bilinear form B, ordered by inclusion. Let us call these posets P_{B_N}, P_{C_N} and P_{D_N} depending on the type of given vector space V_N.

Note that, by Witt’s theorem, each poset in Definition 4 has maximal rank N and that a subspace of an isotropic subspace of V_N is again an isotropic subspace of V_N. Therefore, P_{B_N}, P_{C_N} and P_{D_N} are meet semilattices. We let $L_n(q)$ denote the lattice of subspaces of an n-dimensional vector space V over \mathbb{F}_q. Note that $\mu_P(z, y) = (−1)^{i−j}q^{(i_0^2)}$ when $P = L_n(q)$ and $z \in P_j$, $y \in P_i$ (see [11]). It is known that the signed sum of maximal isotropic subspaces of V_N of type D_N forms a null $(N−1, N)$-design, where the sign of each isotropic space is defined as $\text{sign}(y) = (−1)^{\dim(y \wedge y_0)}$ for some fixed isotropic space y_0 (see [9]). If we apply Propositions 1 and 2 to $L_n(q)$, we obtain the following result that serves as the fundamental case for the posets of dual polar spaces. The proofs are in [5] and [6].

Proposition 5. If P is the subspace lattice of an n-dimensional vector space V, i.e. $P = L_n(q)$,

1. the minimum of the support size of non-zero elements of $N_P(t, t+1)$ is $\prod_{i=0}^t (1 + q^i)$,

2. if ω is a minimal null design in $N_P(t, t+1)$, then ω is a multiple of the signed sum of maximal isotropic subspaces of some $2(t+1)$-dimensional subspace of V equipped with the symmetric bilinear form of type D_{t+1}.

Observe that for a given isotropic subspace x of V_N of types B_N, C_N and D_N, the interval $[\langle 0 \rangle, x]$ is exactly same as the interval $[(0), x]$ in $L_n(q)$, where $n = 2N + 1$ or $n = 2N$ depending on the type. Hence, the value of Möbius functions on P_{B_N}, P_{C_N} and P_{D_N} equals to the value of Möbius function on $L_n(q)$, and the lower bounds given in Proposition 1 are $\prod_{i=0}^t (1 + q^i)$. We now show that this bound is tight for P_{B_N}, P_{D_N}, but it is not tight for P_{C_N}.

Theorem 6. If $P = P_{B_N}, P_{D_N}$, the minimum of the support size of non-zero elements of $N_P(t, t+1)$ is $\prod_{i=0}^t (1 + q^i)$.

Throughout the proof, we let \(x \) get a contradiction. Without loss of generality, we may assume that \(\prod_{i=1}^t \langle i \rangle \) for some cases of type \(B \). Let \(\langle i \rangle \) for \(t \) be elements in \(N(q) \). We let \(x \cup y \) be the join of \(x \) and \(y \), that is the smallest space that contains \(x \) and \(y \). The meet of \(x \) and \(y \), denoted by \(x \land y \), is the intersection of \(x \) and \(y \).

Theorem 7. Let \(t + 1 = N \), \(N > 1 \), then for \(\omega \in N_{P_{CN}}(t, t+1) \), which is non-zero,

\[
|\text{Supp}(\omega)| > \prod_{i=0}^t (1 + q^i).
\]

Proof. Throughout the proof, we let \(P = P_{CN} \). Let us assume that there is a non-zero element \(\omega \) of \(N_P(t, t+1) \), whose support size \(\prod_{i=0}^t (1 + q^i) \). We apply Proposition 2 to \(\omega \) throughout the proof to get a contradiction. Without loss of generality, we may assume that \(x_0 = \langle e_1, \ldots, e_{t+1} \rangle \in P_{t+1} \) is in \(\text{Supp}(\omega) \) and \(c_\omega(x_0) = +1 \). Let \(z_0 = \langle e_1, \ldots, e_{t-1} \rangle \in P_{t-1} \) and \(y_1 = z_0 \cup \langle e_t \rangle \). Let \(y_2 = z_0 \cup \langle e_{t+1} \rangle \) and \(y_3 = z_0 \cup \langle e_t, e_{t+1} \rangle \) be elements in \(P_t \). Then, since \(y_i \leq x_0 \) for each \(i = 1, 2, 3 \), by Proposition 2, there must be unique \(x_i \) in \(\text{Supp}(\omega) \) such that \(x_0 \land x_i = y_i \) and \(c_\omega(x_i) = -1 \). We also let \(A = \{ x \in \text{Supp}(\omega) \mid x_0 \land x = z_0 \} \), then by Proposition 2, \(|A| = q \) and \(c_\omega(x) = +1 \) for all \(x \in A \).

Choose two vectors \(w_1, w_2 \) so that \(x_i = y_i \cup \langle w_i \rangle \) for \(i = 1, 2 \), and \(x_i^A \in A \), then \(x_0 \land x_i^A \), \(i = 1, 2 \), is \(t \)-dimensional since both \(x_i \) and \(x_i^A \) contain \(z_0 \) in \(P_{t-1} \), and \(c_\omega(x_i) = -c_\omega(x_i^A) \). Hence \(x_1^A \land x_1 = z_0 \cup \langle v_1 \rangle \) for some \(v_1 = w_1 + \alpha e_t \), and \(x_2^A \land x_2 = z_0 \cup \langle v_2 \rangle \) for some \(v_2 = w_2 + \beta e_{t+1} \), \(\alpha, \beta \in F_q \) (note that \(x_1^A \land x_1 \) can not be \(y_i \) for \(i = 1, 2 \)). Observe that \(x_i = y_i \cup \langle w_i \rangle = y_i \cup \langle v_i \rangle \) for \(i = 1, 2 \), and \(x_1 \land x_1^A = z_0 \cup \langle v_1, v_2 \rangle \).

Since \(t + 1 = N \), \(x_1 \) and \(x_2 \) are maximal isotropic spaces and \(x_1 \cup \langle v_2 \rangle \) and \(x_2 \cup \langle v_1 \rangle \) are not isotropic spaces. Therefore, \(B(e_t, v_2) \) and \(B(e_{t+1}, v_1) \) are non-zero and without loss of generality, we assume that \(B(e_t, v_2) = B(e_{t+1}, v_1) = 1 \). Let us consider another element \(x_2^A \) of \(A \),
then by the same argument as above, $x_2^A = z_0 \lor \langle v'_1, v'_2 \rangle$ where $v'_1 = v_1 + \alpha' e_t$ and $v'_2 = v_2 + \beta' e_{t+1}$, for $\alpha', \beta' \in \mathbb{F}_q$. Since x_2^A is isotropic, $B(v'_1, v'_2) = B(v_1 + \alpha' e_t, v_2 + \beta' e_{t+1}) = \beta'B(v_1, e_{t+1}) + \alpha'B(e_t, v_2) = -\beta' + \alpha'$ should be 0. Hence, we have $\alpha' = \beta'$. Above observation implies that $A = \{z_0 \lor (v_1 + \gamma e_t, v_2 + \gamma e_{t+1}) | \gamma \in \mathbb{F}_q\}$, since $|A| = q$.

We now consider $x_3 \in \text{Supp}(\omega)$ and $x_3^A = z_0 \lor \langle v_1 + e_t, v_2 + e_{t+1} \rangle \in A$. Since $x_3 \land x_1^A$ is t-dimensional, $x_3 = y_3 \lor \langle v_3 \rangle$, where $v_3 = \alpha_1 v_1 + \alpha_2 v_2$, $\alpha_1, \alpha_2 \in \mathbb{F}_q$. x_3 is an isotropic space, so we have $B(e_t + e_{t+1}, v_3) = \alpha_2 + \alpha_1 = 0$ and, we can say that $x_3 = z_0 \lor \langle e_t + e_{t+1}, v_1 - v_2 \rangle$. Moreover, since $x_3 \land x_3^A$ is t-dimensional, $\langle v_1 + e_t, v_2 + e_{t+1} \rangle \land \langle e_t + e_{t+1}, v_1 - v_2 \rangle$ should be 1-dimensional but it is $\langle 0 \rangle$, so we have a contradiction. This completes the proof.

Remark 8. Note that the skew symmetry of the bilinear form of type C_N plays the central role in the proof of Theorem 7.

References

Null designs of dual polar spaces

Department of Mathematics
Ajou University
Suwon 442-749, Korea
E-mail: chosj@ajou.ac.kr