ON (α, β)-FUZZY SUBALGEBRAS OF BCK/BCI-ALGEBRAS

YOUNG BAE JUN

ABSTRACT. Using the belongs to relation (\in) and quasi-coincidence with relation (q) between fuzzy points and fuzzy sets, the concept of (α, β)-fuzzy subalgebras where α, β are any two of \{\in, q, \in \lor q, \in \land q\} with $\alpha \neq \in \land q$ is introduced, and related properties are investigated.

1. Introduction

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [4], played a vital role to generate some different types of fuzzy subgroups, called (α, β)-fuzzy subgroups, introduced by Bhakat and Das[2]. In particular, $(\in, \in \lor q)$-fuzzy subgroup is an important and useful generalization of Rosenfeld’s fuzzy subgroup. It is now natural to investigate similar type of generalizations of the existing fuzzy sub-systems of other algebraic structures. With this objective in view, we introduce the concept of (α, β)-fuzzy subalgebra of a BCK/BCI-algebra and investigate related results.

2. Preliminaries

By a BCI-algebra we mean an algebra $(X, \ast, 0)$ of type $(2, 0)$ satisfying the axioms:

(i) $(\forall x, y, z \in X) \left(((x \ast y) \ast (x \ast z)) \ast (z \ast y) = 0 \right)$,
(ii) $(\forall x, y \in X) \left((x \ast (x \ast y)) \ast y = 0 \right)$,
(iii) $(\forall x \in X) \left(x \ast x = 0 \right)$,
(iv) $(\forall x, y \in X) \left(x \ast y = y \ast x = 0 \Rightarrow x = y \right)$.

2000 Mathematics Subject Classification: 03G10, 03B05, 03B52, 06F35.
Key words and phrases: belong to, quasi-coincident with, (α, β)-fuzzy subalgebra.
This work was supported by Korea Research Foundation Grant (KRF-2003-005-C00013).
We can define a partial ordering \leq by $x \leq y$ if and only if $x \ast y = 0$. If a BCI-algebra X satisfies $0 \ast x = 0$ for all $x \in X$, then we say that X is a BCK-algebra. In what follows let X denote a BCK/BCI-algebra unless otherwise specified. A nonempty subset S of X is called a subalgebra of X if $x \ast y \in S$ for all $x, y \in S$. We refer the reader to the book [3] for further information regarding BCK/BCI-algebras.

A fuzzy set μ in a set X of the form

$$
\mu(y) := \begin{cases}
 t & \text{if } y = x, \\
 0 & \text{if } y \neq x
\end{cases}
$$

is said to be a fuzzy point with support x and value t and is denoted by x_t.

For a fuzzy point x_t and a fuzzy set μ in a set X, Pu and Liu[4] gave meaning to the symbol $x_t \alpha \mu$, where $\alpha \in \{\in, q, \in \lor q, \in \land q\}$.

To say that $x_t \in \mu \lor q \mu$ (resp. $x_t \in \land q \mu$) means that $x_t \in \mu$ or $x_t \in \mu \land q \mu$. For all $t_1, t_2 \in [0, 1]$, $\min\{t_1, t_2\}$ will be denoted by $M(t_1, t_2)$.

A fuzzy set μ in X is called a fuzzy subalgebra of X if it satisfies

$$
(\forall x, y \in X) \ (\mu(x \ast y) \geq M(\mu(x), \mu(y))).
$$

Proposition 2.1. Let μ be a fuzzy set in X. Then μ is a fuzzy subalgebra of X if and only if $U(\mu; t) := \{x \in X \mid \mu(x) \geq t\}$ is a subalgebra of X for all $t \in [0, 1]$, for our convenience, the empty set \emptyset is regarded as a subalgebra of X.

3. (α, β)-fuzzy subalgebras

In what follows let α and β denote any one of $\in, q, \in \lor q, \in \land q$ unless otherwise specified. To say that $x_t \alpha \mu$ means that $x_t \alpha \mu$ does not hold.

Proposition 3.1. For any fuzzy set μ in X, the condition (1) is equivalent to the following condition

$$
(\forall x, y \in X) \ (\forall t_1, t_2 \in (0, 1)) \ (x_{t_1}, y_{t_2} \in \mu \Rightarrow (x \ast y)_{M(t_1, t_2)} \in \mu).
$$

Proof. Assume that the condition (1) is valid. Let $x, y \in X$ and $t_1, t_2 \in (0, 1)$ be such that $x_{t_1}, y_{t_2} \in \mu$. Then $\mu(x) \geq t_1$ and $\mu(y) \geq t_2$. Then...
which imply from (1) that
\[\mu(x + y) \geq M(\mu(x), \mu(y)) \geq M(t_1, t_2). \]

Hence \((x + y)_{M(t_1,t_2)} \in \mu\).

Conversely suppose that the condition (2) is valid. Note that \(x_{\mu(x)} \in \mu\) and \(y_{\mu(y)} \in \mu\) for all \(x, y \in X\). Thus \((x + y)_{M(\mu(x),\mu(y))} \in \mu\) by (2), and so \(\mu(\mu(x), \mu(y))\).

Note that if \(\mu\) is a fuzzy set in \(X\) defined by \(\mu(x) \leq 0.5\) for all \(x \in X\), then the set \(\{x \in X \mid x \in \mu\}\) is empty.

A fuzzy set \(\mu\) in \(X\) is said to be an \((\alpha, \beta)\)-fuzzy subalgebra of \(X\), where \(\alpha \neq 0\) if it satisfies the following conditions:

\[(3) \quad (\forall x, y \in X) ((\forall t_1, t_2 \in (0,1))(x_{t_1, \alpha \mu}, y_{t_2, \alpha \mu} \Rightarrow (x + y)_{M(t_1,t_2)}(\beta \mu). \]

Example 3.2. Consider a BCI-algebra \(X = \{0, a, b, c\}\) with the following Cayley table (see [1]):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

Let \(\mu\) be a fuzzy set in \(X\) defined by \(\mu(0) = 0.6\), \(\mu(a) = 0.7\), and \(\mu(b) = \mu(c) = 0.3\). Then \(\mu\) is an \((\varepsilon, \varepsilon)\)-fuzzy subalgebra of \(X\). But

1. \(\mu\) is not an \((\varepsilon, \varepsilon)\)-fuzzy subalgebra of \(X\) since \(a_{0.62} \in \mu\) and \(a_{0.66} \in \mu\), but \((a * a)_{M(0.62,0.66)} = a_{0.62} \notin \mu\).
2. \(\mu\) is not a \((\varepsilon, \varepsilon)\)-fuzzy subalgebra of \(X\) since \(a_{0.41} q \mu\) and \(b_{0.77} q \mu\), but \((a * b)_{M(0.41,0.77)} = c_{0.41} \notin \varepsilon q \mu\).
3. \(\mu\) is not an \((\varepsilon, \varepsilon)\)-fuzzy subalgebra of \(X\) since \(a_{0.5} \in \varepsilon q \mu\) and \(|0.8 \in \varepsilon q \mu|\), but \((a * c)_{M(0.5,0.8)} = b_{0.5} \notin \varepsilon q \mu\).

Theorem 3.3. Every \((\varepsilon, \varepsilon)\)-fuzzy subalgebra is an \((\varepsilon, \varepsilon)\)-fuzzy subalgebra.

Proof. Let \(\mu\) be an \((\varepsilon, \varepsilon)\)-fuzzy subalgebra of \(X\). Let \(x, y \in X\) and \(t_1, t_2 \in (0,1]\) be such that \(x_{t_1, \mu} \in \mu\) and \(y_{t_2, \mu} \in \mu\). Then \(x_{t_1, \varepsilon q} \mu\) and \(y_{t_2, \varepsilon q} \mu\), which imply that \((x + y)_{M(t_1,t_2)} \in \varepsilon q \mu\). Hence \(\mu\) is an \((\varepsilon, \varepsilon)\)-fuzzy subalgebra of \(X\).

Theorem 3.4. Every \((\varepsilon, \varepsilon)\)-fuzzy subalgebra is an \((\varepsilon, \varepsilon)\)-fuzzy subalgebra.

Proof. Straightforward.
Example 3.2 shows that the converse of Theorems 3.3 and 3.4 need not be true.

Proposition 3.5. If μ is a non-zero (α, β)-fuzzy subalgebra of X, then $\mu(0) > 0$.

Proof. Assume that $\mu(0) = 0$. Since μ is non-zero, there exists $x \in X$ such that $\mu(x) = t > 0$. If $\alpha = \varepsilon$ or $\alpha = \varepsilon \lor q$, then $x_1 \alpha \mu$, but $(x \ast x)_{M(t,1)} = 0_1 \beta \mu$. This is a contradiction. If $\alpha = q$, then $x_1 \alpha \mu$ because $\mu(x) + 1 = t + 1 > 1$. But $(x \ast x)_{M(1,1)} = 0_1 \beta \mu$, which is a contradiction. Hence $\mu(0) > 0$.

For a fuzzy set μ in X, we denote $X_0 := \{x \in X \mid \mu(x) > 0\}$.

Theorem 3.6. If μ is a nonzero $(\varepsilon, \varepsilon)$-fuzzy subalgebra of X, then the set X_0 is a subalgebra of X.

Proof. Let $x, y \in X_0$. Then $\mu(x) > 0$ and $\mu(y) > 0$. Suppose that $\mu(x \ast y) = 0$. Note that $x_{\mu(x)} \in \mu$ and $y_{\mu(y)} \in \mu$, but $(x \ast y)_{M(\mu(x),\mu(y))} \subseteq \mu$ because $\mu(x \ast y) = 0 < M(\mu(x),\mu(y))$. This is a contradiction, and thus $\mu(x \ast y) > 0$, which shows that $x \ast y \in X_0$. Consequently X_0 is a subalgebra of X.

Theorem 3.7. If μ is a nonzero (ε, q)-fuzzy subalgebra of X, then the set X_0 is a subalgebra of X.

Proof. Let $x, y \in X_0$. Then $\mu(x) > 0$ and $\mu(y) > 0$. If $\mu(x \ast y) = 0$, then

$$\mu(x \ast y) + M(\mu(x),\mu(y)) = M(\mu(x),\mu(y)) \leq 1.$$

Hence $(x \ast y)_{M(\mu(x),\mu(y))} \subseteq \mu$, which is a contradiction since $x_{\mu(x)} \in \mu$ and $y_{\mu(y)} \in \mu$. Thus $\mu(x \ast y) > 0$, and so $x \ast y \in X_0$. Therefore X_0 is a subalgebra of X.

Theorem 3.8. If μ is a nonzero (q, ε)-fuzzy subalgebra of X, then the set X_0 is a subalgebra of X.

Proof. Let $x, y \in X_0$. Then $\mu(x) > 0$ and $\mu(y) > 0$. Thus $\mu(x) + 1 > 1$ and $\mu(y) + 1 > 1$, which imply that $x_1 q \mu$ and $y_1 q \mu$. If $\mu(x \ast y) = 0$, then $\mu(x \ast y) < 1 = M(1,1)$. Therefore $(x \ast y)_{M(1,1)} \subseteq \mu$, which is a contradiction. It follows that $\mu(x \ast y) > 0$ so that $x \ast y \in X_0$. This completes the proof.

Theorem 3.9. If μ is a nonzero (q, q)-fuzzy subalgebra of X, then the set X_0 is a subalgebra of X.

Proof. Let $x, y \in X_0$. Then $\mu(x) > 0$ and $\mu(y) > 0$. Thus $\mu(x) + 1 > 1$ and $\mu(y) + 1 > 1$, and therefore $x_1 q \mu$ and $y_1 q \mu$. If $\mu(x * y) = 0$, then $\mu(x * y) + M(1, 1) = 0 + 1 = 1$, and so $(x * y)_{M(1,1)} \notq \mu$. This is impossible, and hence $\mu(x * y) > 0$, i.e., $x * y \in X_0$. This completes the proof.

Corollary 3.10. If μ is one of the following

(i) a nonzero $(\in, \in \land q)$-fuzzy subalgebra of X,
(ii) a nonzero $(\in, \in \lor q)$-fuzzy subalgebra of X,
(iii) a nonzero $(\in \lor q, q)$-fuzzy subalgebra of X,
(iv) a nonzero $(\in \lor q, \in q)$-fuzzy subalgebra of X,
(v) a nonzero $(\in q, \in \lor q)$-fuzzy subalgebra of X,
(vi) a nonzero $(q, \in \lor q)$-fuzzy subalgebra of X,
(vii) a nonzero $(q, \in \land q)$-fuzzy subalgebra of X,
then the set X_0 is a subalgebra of X.

Proof. The proof is similar to the proof of Theorems 3.6, 3.7, 3.8, and/or 3.9.

Theorem 3.11. Every nonzero (q, q)-fuzzy subalgebra of X is constant on X_0.

Proof. Let μ be a nonzero (q, q)-fuzzy subalgebra of X. Assume that μ is not constant on X_0. Then there exists $y \in X_0$ such that $t_y = \mu(y) \neq \mu(0) = t_0$. Then either $t_y > t_0$ or $t_y < t_0$. Suppose $t_y < t_0$ and choose $t_1, t_2 \in (0, 1]$ such that $1 - t_0 < t_1 < 1 - t_y < t_2$. Then $\mu(0) + t_1 = t_0 + t_1 > 1$ and $\mu(y) + t_2 = t_y + t_2 > 1$, and so $t_1 q \mu$ and $y_1 q \mu$. Since

$$\mu(y * 0) + M(t_1, t_2) = \mu(y) + t_1 = t_y + t_1 < 1,$$

we have $(y * 0)_{M(t_1, t_2)} \notq \mu$, which is a contradiction. Next assume that $t_y > t_0$. Then $\mu(y) + (1 - t_0) = t_y + 1 - t_0 > 1$ and so $y_1 - t_0 q \mu$. Since

$$\mu(y * y) + (1 - t_0) = \mu(0) + 1 - t_0 = t_0 + 1 - t_0 = 1,$$

we get $(y * y)_{M(1 - t_0, 1 - t_0)} \notq \mu$. This is impossible. Therefore μ is constant on X_0.

Theorem 3.12. Let μ be a non-zero (α, β)-fuzzy subalgebra of X, where (α, β) is one of the following:

- (\in, q),
- (q, \in),
- $(\in \lor q, q)$,
- $(\in \lor q, \in q)$,
- $(\in \lor q, \in)$.

Then $\mu = \chi_{X_0}$, the characteristic function of X_0.

Assume that there exists \(x \in X_0 \) such that \(\mu(x) < 1 \). For \(\alpha = \varepsilon \), choose \(t \in (0, 1] \) such that \(t < M(1 - \mu(x), \mu(x)) \). Then \(\alpha \mu \) and \(0_1 \alpha \mu \), but \((x \ast 0)_{M(t, t)} = x_t \beta \mu \) where \(\beta = q \) or \(\beta = \varepsilon \land q \). This is a contradiction. Now let \(\alpha = q \). Then \(\alpha \mu \) and \(0_1 \alpha \mu \), but \((x \ast 0)_{M(t, 1)} = x_t \beta \mu \) for \(\beta = \varepsilon \) or \(\beta = \varepsilon \land q \), a contradiction. Finally let \(\alpha = \varepsilon \lor q \) and choose \(t \in (0, 1] \) such that \(x_t \in \mu \) but \(x_t \notin \mu \). Then \(\alpha \mu \) and \(0_1 \alpha \mu \), but \((x \ast 0)_{M(t, 1)} = x_t \beta \mu \) for \(\beta = q \) or \(\beta = \varepsilon \land q \). This is impossible. Note that \(\alpha \mu \) and \(0_1 \alpha \mu \) but \((x \ast 0)_{M(t, 1)} = x_t \in \mu \), a contradiction. Therefore \(\mu = \chi_{x_0} \).

Theorem 3.13. Let \(S \) be a subalgebra of \(X \) and let \(\mu \) be a fuzzy set in \(X \) such that

(i) \(\mu(x) = 0 \) for all \(x \in X \setminus S \),

(ii) \(\mu(x) \geq 0.5 \) for all \(x \in S \).

Then \(\mu \) is a \((q, \in \lor q) \)-fuzzy subalgebra of \(X \).

Proof. Let \(x, y \in X \) and \(t_1, t_2 \in (0, 1] \) be such that \(x_{t_1} \in M \mu \) and \(y_{t_2} \in M \mu \), that is, \(\mu(x) + t_1 > 1 \) and \(\mu(y) + t_2 > 1 \). Then \(x \ast y \in S \) because if not then \(x \notin X \setminus S \) or \(y \notin X \setminus S \). Thus \(\mu(x) = 0 \) or \(\mu(y) = 0 \), and so \(t_1 > 1 \) or \(t_2 > 1 \). This is a contradiction. If \(M(t_1, t_2) > 0.5 \), then \(\mu(x \ast y) + M(t_1, t_2) > 1 \) and thus \((x \ast y)_{M(t_1, t_2)} \in M \mu \). If \(M(t_1, t_2) \leq 0.5 \), then \(\mu(x \ast y) \geq 0.5 \geq M(t_1, t_2) \) and so \((x \ast y)_{M(t_1, t_2)} \in M \mu \). Therefore \((x \ast y)_{M(t_1, t_2)} \in \lor q \mu \). This completes the proof.

Theorem 3.14. Let \(\mu \) be a \((q, \in \lor q) \)-fuzzy subalgebra of \(X \) such that \(\mu \) is not constant on \(X_0 \). Then there exists \(x \in X \) such that \(\mu(x) \geq 0.5 \). Moreover, \(\mu(x) \geq 0.5 \) for all \(x \in X \).

Proof. Assume that \(\mu(x) < 0.5 \) for all \(x \in X \). Since \(\mu \) is not constant on \(X_0 \), there exists \(x \in X_0 \) such that \(t_x = \mu(x) \neq \mu(0) = t_0 \). Then either \(t_0 < t_x \) or \(t_0 > t_x \). For the first case, choose \(\delta > 0.5 \) such that \(t_0 \lor \delta < t_x \lor \delta \). It follows that \(x_{t_0} \mu, \mu(x \ast x) = \mu(0) = y_0 < \delta = M(\delta, \delta) \), and \(\mu(x \ast x) + M(\delta, \delta) = \mu(0) + \delta = t_0 \lor \delta < 1 \) so that \((x \ast x)_{M(\delta, \delta)} \notin \lor q \mu \). This is a contradiction. Now if \(t_0 > t_x \), we can choose \(\delta > 0.5 \) such that \(t_x \lor \delta < t_0 \lor \delta \). Then \(0 \notin \mu \) and \(x_{t_0} \mu \), but \((x \ast 0)_{M(t, \delta)} = x_t \notin \lor q \mu \) since \(\mu(x) < 0.5 \). This leads a contradiction. Therefore \(\mu(x) \geq 0.5 \) for some \(x \in X \). We now show that \(\mu(0) \geq 0.5 \). Assume that \(\mu(0) = t_0 < 0.5 \). Since there exists \(x \in X \) such that \(\mu(x) = t_x \geq 0.5 \), it follows that \(t_0 < t_x \). Choose \(t_1 > t_0 \) such that \(t_0 + t_1 < t_x + t_1 \). Then \(\mu(x) + t_1 = t_x + t_1 > 1 \), and so \(v_{t_1} \mu \). Now we get

\[
\mu(x \ast x) + M(t_1, t_1) = \mu(0) + t_1 = t_0 + t_1 < 1,
\]
For any subset A fuzzy set Suppose that contradiction. Consequently,

\[\mu(x + x) = \mu(0) = t_0 < t_1 = M(t_1, t_1). \]

Hence $(x + x)_M(t_1, t_1) \in \vee q \mu$, a contradiction. Therefore $\mu(0) \geq 0.5$. Finally suppose that $t_x = \mu(x) < 0.5$ for some $x \in X_0$. Take $t > 0$ such that $t_x + t < 0.5$. Then $\mu(x) + 1 = t_x + 1 > 1$ and $\mu(0) + (0.5 + t) > 1$, which imply that $x_1 \in \mu$ and $0_{0.5+t} \in q \mu$. But $(x+0)_M(1,0.5+t) = x_{0.5+t} \in \vee q \mu$ since $\mu(x+0) = \mu(x) < 0.5 + t < M(1,0.5 + t)$ and

\[\mu(x+0) + M(1,0.5 + t) = \mu(x) + 0.5 + t = t_x + 0.5 + t < 0.5 + 0.5 = 1. \]

This is a contradiction. Hence $\mu(x) \geq 0.5$ for all $x \in X_0$. This completes the proof.

Theorem 3.15. A fuzzy set μ in X is an $(\in, \in \vee q)$-fuzzy subalgebra of X if and only if it satisfies:

\[(\forall x, y \in X) \left(\mu(x \ast y) \geq M(\mu(x), \mu(y), 0.5) \right). \]

Proof. Suppose that μ is an $(\in, \in \vee q)$-fuzzy subalgebra of X and let $x, y \in X$. If $M(\mu(x), \mu(y)) < 0.5$, then $\mu(x \ast y) \geq M(\mu(x), \mu(y))$. For, assume that $\mu(x \ast y) < M(\mu(x), \mu(y))$ and choose t such that $\mu(x \ast y) < t < M(\mu(x), \mu(y))$. Then $x_t \in \mu$ and $y_t \in \mu$ but $(x \ast y)_M(t, t) = (x \ast y)_t \in \vee q \mu$, a contradiction. Hence $\mu(x \ast y) \geq M(\mu(x), \mu(y))$ whenever $M(\mu(x), \mu(y)) < 0.5$. Now suppose that $M(\mu(x), \mu(y)) \geq 0.5$. Then $x_{0.5} \in \mu$ and $y_{0.5} \in \mu$, which imply that

\[(x \ast y)_{M(0.5,0.5)} = (x \ast y)_{0.5} \in \vee q \mu. \]

Thus $\mu(x \ast y) \geq 0.5$. Otherwise, $\mu(x \ast y) + 0.5 < 0.5 + 0.5 = 1$, a contradiction. Consequently, $\mu(x \ast y) \geq M(\mu(x), \mu(y), 0.5)$ for all $x, y \in X$. Conversely assume that (4) is valid. Let $x, y \in X$ and $t_1, t_2 \in (0,1]$ be such that $x_{t_1} \in \mu$ and $y_{t_2} \in \mu$. Then $\mu(x) \geq t_1$ and $\mu(y) \geq t_2$. If $\mu(x \ast y) < M(t_1, t_2)$, then $M(\mu(x), \mu(y)) \geq 0.5$. Otherwise, we have

\[\mu(x \ast y) \geq M(\mu(x), \mu(y), 0.5) \geq M(\mu(x), \mu(y)) \geq M(t_1, t_2), \]

a contradiction. It follows that

\[\mu(x \ast y) + M(t_1, t_2) > 2\mu(x \ast y) \geq 2M(\mu(x), \mu(y), 0.5) = 1 \]

so that $(x \ast y)_{M(t_1, t_2)} q \mu$. Therefore μ is an $(\in, \in \vee q)$-fuzzy subalgebra of X. \hfill \Box

Theorem 3.16. For any subset S of X, the characteristic function χ_S of S is an $(\in, \in \vee q)$-fuzzy subalgebra of X if and only if S is a subalgebra of X.

On (α, β)-fuzzy subalgebras of BCK/BCI-algebras 709
Assume that χ_S is an (\in, \vee, \lor)-fuzzy subalgebra of X. Let $x, y \in S$. Then $\chi_S(x) = 1 = \chi_S(y)$, and so $x_1 \in \chi_S$ and $y_1 \in \chi_S$. It follows that $(x * y)_1 = (x * y)_{M(1, 1)} \in \vee q \chi_S$ which yields $\chi_S(x * y) > 0$. Hence $xy \in S$, and thus S is a subalgebra of X. Conversely if S is a subalgebra of X, then χ_S is an (\in, \vee, \lor)-fuzzy subalgebra of X. It follows from Theorem 3.4 that χ_S is an (\in, \vee, q)-fuzzy subalgebra of X.

Theorem 3.17. Let $\{\mu_i\} i \in \Lambda$ be a family of (\in, \vee, q)-fuzzy subalgebras of X. Then $\mu := \bigcap_{i \in \Lambda} \mu_i$ is an (\in, \vee, q)-fuzzy subalgebra of X.

Proof. Let $x, y \in X$ and $t_1, t_2 \in (0, 1]$ be such that $x_1 \in \mu$ and $y_2 \in \mu$. Assume that $(x * y)_{M(t_1, t_2)} \in \vee q \mu$. Then $\mu(x * y) < M(t_1, t_2)$ and $\mu(x * y) + M(t_1, t_2) \leq 1$, which imply that

\[(5) \quad \mu(x * y) < 0.5. \]

Let $\Omega_1 := \{ i \in \Lambda | (x * y)_{M(t_1, t_2)} \in \mu_i \}$ and

\[\Omega_2 := \{ i \in \Lambda | (x * y)_{M(t_1, t_2)} q \mu_i \} \cap \{ j \in \Lambda | (x * y)_{M(t_1, t_2)} \sqsupseteq \mu_j \}. \]

Then $\Lambda = \Omega_1 \cup \Omega_2$ and $\Omega_1 \cap \Omega_2 = \emptyset$. If $\Omega_2 = \emptyset$, then $(x * y)_{M(t_1, t_2)} \in \mu_i$ for all $i \in \Lambda$, that is, $\mu_i(x * y) \geq M(t_1, t_2)$ for all $i \in \Lambda$, which yields $\mu(x * y) \geq M(t_1, t_2)$. This is a contradiction. Hence $\Omega_2 \neq \emptyset$, and so for every $i \in \Omega_2$ we have $\mu_i(x * y) < M(t_1, t_2)$ and $\mu_i(x * y) + M(t_1, t_2) > 1$. It follows that $M(t_1, t_2) > 0.5$. Now $x_1 \in \mu$ implies $\mu(x) \geq t_1$ and thus $\mu_i(x) \geq \mu(x) \geq t_1 \geq M(t_1, t_2) > 0.5$ for all $i \in \Lambda$. Similarly we get $\mu_i(y) > 0.5$ for all $i \in \Lambda$. Next suppose that $t := \mu_i(x * y) < 0.5$. Taking $t < r < 0.5$, we get $x_r \in \mu_i$ and $y_r \in \mu_i$, but $(x * y)_{M(r, r)} = (x * y)_r \in \vee q \mu_i$. This contradicts that μ_i is an (\in, \vee, q)-fuzzy subalgebra of X. Hence $\mu_i(x * y) \geq 0.5$ for all $i \in \Lambda$, and so $\mu(x * y) \geq 0.5$ which contradicts (5). Therefore $(x * y)_{M(t_1, t_2)} \in \vee q \mu$ and consequently μ is an (\in, \vee, q)-fuzzy subalgebra of X.

References

On (α, β)-fuzzy subalgebras of BCK/BCI-algebras

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

E-mail: ybjun@gsnu.ac.kr