ENDPOINT ESTIMATES FOR MULTILINEAR INTEGRAL OPERATORS

LIU LANZHE
ENDPOINT ESTIMATES FOR MULTILINEAR INTEGRAL OPERATORS

LIU LANZHE

Abstract. In this paper, the endpoint estimates for some multilinear operators related to certain integral operators are obtained. The operators include Littlewood-Paley operators and Marcinkiewicz operators.

1. Introduction and Notations

As the development of singular integral operators, their commutators and multilinear operators have been well studied (see [1-6]). In [10], the boundedness properties of the commutators for the extreme values of p are obtained. The main purpose of this paper is to establish the endpoint continuity properties of some multilinear operators related to certain non-convolution type integral operators. The operators include Littlewood-Paley operators and Marcinkiewicz operators.

First, let us introduce some notations (see [7-9], [14-16]). Throughout this paper, Q will denote a cube of \mathbb{R}^n with sides parallel to the axes. For a cube Q and a locally integrable function f, let $f_Q = |Q|^{-1}\int_Q f(x)dx$ and $f^\#(x) = \sup_{x \in Q} |Q|^{-1}\int_Q |f(y) - f_Q|dy$. Moreover, f is said to belong to $BMO(\mathbb{R}^n)$ if $f^\# \in L^\infty$ and define $||f||_{BMO} = ||f^\#||_{L^\infty}$; We also define the central BMO space by $CMO(\mathbb{R}^n)$, which is the space of those functions $f \in L_{loc}(\mathbb{R}^n)$ such that

$$||f||_{CMO} = \sup_{r > 1} ||Q(0, r)||^{-1}\int_Q |f(y) - f_Q|dy < \infty.$$

It is well-known that (see [8], [9])

$$||f||_{CMO} \approx \sup_{r > 1} \inf_{c \in C} ||Q(0, r)||^{-1}\int_Q |f(x) - c|dx.$$

Also, we give the concepts of the atom and H^1 space. A function a is called as H^1 atom if there exists a cube Q such that a is supported on Q, $||a||_{L^\infty} \leq |Q|^{-1}$.
and $\int a(x)\,dx = 0$. It is well known that the Hardy space $H^1(R^n)$ has the atomic decomposition characterization (see [9]).

For $k \in \mathbb{Z}$, define $B_k = \{x \in R^n : |x| \leq 2^k\}$ and $C_k = B_k \setminus B_{k-1}$. Denote by χ_k the characteristic function of C_k and $\tilde{\chi}_k$ the characteristic function of C_k for $k \geq 1$ and $\tilde{\chi}_0$ the characteristic function of B_0.

Definition 1. Let $0 < p < \infty$ and $\alpha \in R$.

1. The homogeneous Herz space $\dot{K}_p^\alpha(R^n)$ is defined by
 $$\dot{K}_p^\alpha(R^n) = \{f \in L^p_{\text{loc}}(R^n \setminus \{0\}) : ||f||_{\dot{K}_p^\alpha} < \infty\},$$
 where
 $$||f||_{\dot{K}_p^\alpha} = \sum_{k=-\infty}^{\infty} 2^{k\alpha} ||f\chi_k||_{L^p};$$

2. The nonhomogeneous Herz space $K_p^\alpha(R^n)$ is defined by
 $$K_p^\alpha(R^n) = \{f \in L^p_{\text{loc}}(R^n) : ||f||_{K_p^\alpha} < \infty\},$$
 where
 $$||f||_{K_p^\alpha} = \sum_{k=0}^{\infty} 2^{k\alpha} ||f\tilde{\chi}_k||_{L^p}.$$

If $\alpha = n(1 - 1/p)$, we denote that $\dot{K}_p^\alpha(R^n) = \dot{K}_p(R^n)$, $K_p^\alpha(R^n) = K_p(R^n)$.

Definition 2. Let $0 < \delta < n$ and $1 < p < n/\delta$. We shall call $B_p^\delta(R^n)$ the space of those functions f on R^n such that
 $$||f||_{B_p^\delta} = \sup_{r>1} r^{-n(1/p-\delta/n)} ||f\chi_{Q(0,r)}||_{L^p} < \infty.$$

Definition 3. Let $1 < p < \infty$.

1. The homogeneous Herz type Hardy space $H\dot{K}_p(R^n)$ is defined by
 $$H\dot{K}_p(R^n) = \{f \in S'(R^n) : G(f) \in \dot{K}_p(R^n)\},$$
 where
 $$||f||_{H\dot{K}_p} = ||G(f)||_{\dot{K}_p};$$

2. The nonhomogeneous Herz type Hardy space $HK_p(R^n)$ is defined by
 $$HK_p(R^n) = \{f \in S'(R^n) : G(f) \in K_p(R^n)\},$$
 where
 $$||f||_{HK_p} = ||G(f)||_{K_p};$$

where $G(f)$ is the grand maximal function of f.

The Herz type Hardy spaces have the atomic decomposition characterization.
Definition 4. Let $1 < p < \infty$. A function $a(x)$ on \mathbb{R}^n is called a central $(n(1-1/p), p)$-atom (or a central $(n(1-1/p), p)$-atom of restrict type), if

1) Suppose $C \subset B(0, r)$ for some $r > 0$ (or for some $r \geq 1$);
2) $\|a\|_{L^p} \leq |B(0, r)|^{1/p-1}$;
3) $\int_{\mathbb{R}^n} a(x) dx = 0$.

Lemma 1. (see [8], [15]). Let $1 < p < \infty$. A temperate distribution f belongs to $\dot{H}_{K_p}(\mathbb{R}^n)$ (or $H_{K_p}(\mathbb{R}^n)$) if and only if there exist central $(n(1-1/p), p)$-atoms (or central $(n(1-1/p), p)$-atoms of restrict type) a_j supported on $B_j = B(0, 2^j)$ and constants λ_j, $\sum_j |\lambda_j| < \infty$ such that $f = \sum_{j=\infty}^\delta \lambda_j a_j$ (or $f = \sum_{j=0}^\delta \lambda_j a_j$) in the $S'(\mathbb{R}^n)$ sense, and

$$\|f\|_{\dot{H}_{K_p}}(\text{or } \|f\|_{H_{K_p}}) \sim \sum_j |\lambda_j|.$$

2. Theorems

In this paper, we will study a class of multilinear operators related to some non-convolution type integral operators, whose definition are following.

Let m_l be the positive integers ($j = 1, \ldots, l$), $m_1 + \cdots + m_l = m$ and A_j be the functions on \mathbb{R}^n ($j = 1, \ldots, l$). Set

$$R_{m_j+1}(A_j; x, y) = A_j(x) - \sum_{|\beta| \leq m_j} \frac{1}{|\beta|} \partial^\beta A_j(y)(x - y)^\beta$$

and

$$Q_{m_j+1}(A_j; x, y) = R_{m_j}(A_j; x, y) - \sum_{|\beta| = m_j} \frac{1}{|\beta|!} D^\beta A_j(x)(x - y)^\beta.$$

Fixed $0 \leq \delta < n$. Let $F_t(x, y)$ define on $\mathbb{R}^n \times \mathbb{R}^n \times [0, +\infty)$. Set

$$F_t(f)(x) = \int_{\mathbb{R}^n} F_t(x, y)f(y)dy$$

and

$$F_t^A(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^l R_{m_j+1}(A_j; x, y) |x - y|^\alpha F_t(x, y)f(y)dy$$

for every bounded and compactly supported function f. Let H be the Banach space $H = \{h : ||h|| < \infty\}$ such that, for each fixed $x \in \mathbb{R}^n$, $F_t(f)(x)$ and $F_t^A(f)(x)$ may be viewed as a mapping from $[0, +\infty)$ to H. Then, the multilinear operator related to F_t is defined by

$$T_t^A(f)(x) = ||F_t^A(f)(x)||,$$

where F_t satisfies: for fixed $\varepsilon > 0$,

$$||F_t(x, y)|| \leq C|x - y|^{-n+\delta}$$

and

$$||F_t(y, x) - F_t(z, x)|| \leq C|y - z|\varepsilon|x - z|^{-n-\varepsilon+\delta}.$$
Let Theorem 4 is also hold for nonhomogeneous Herz and Herz type Hardy properties of the multilinear operators operator are obtained. In this paper, we will study the endpoint continuity

\[L \]

has been widely studied by many authors (see [3-6]). In [2], the weak (\(H^1, L^1 \))-boundedness of the multilinear operator related to some singular integral operator are obtained. In this paper, we will study the endpoint continuity properties of the multilinear operators \(T_3^A \) and \(\tilde{T}_3^A \). In Section 4, we will give some applications of Theorems in this paper.

Now we state our results as following.

Theorem 1. Let \(0 \leq \delta < n \) and \(D^\beta A_j \in BMO(R^n) \) for all \(\beta \) with \(|\beta| = m_j \) and \(j = 1, \ldots, l \). Suppose that \(T_3 \) is bounded from \(L^r(R^n) \) to \(L^s(R^n) \) for any \(r, s \in (1, +\infty] \) with \(1 < r < n/\delta \) and \(1/s = 1/r - \delta/n \). Then \(T_3^A \) is bounded from \(L^{n/\delta}(R^n) \) to \(BMO(R^n) \).

Theorem 2. Let \(0 \leq \delta < n \) and \(D^\beta A_j \in BMO(R^n) \) for all \(\beta \) with \(|\beta| = m_j \) and \(j = 1, \ldots, l \). Suppose that \(\tilde{T}_3^A \) is bounded from \(L^r(R^n) \) to \(L^s(R^n) \) for any \(r, s \in (1, +\infty] \) with \(1 < r < n/\delta \) and \(1/s = 1/r - \delta/n \). Then \(\tilde{T}_3^A \) is bounded from \(H^1(R^n) \) to \(L^{n/(n-\delta)}(R^n) \).

Theorem 3. Let \(0 \leq \delta < n \), \(1 < p < n/\delta \) and \(D^\beta A_j \in BMO(R^n) \) for all \(\beta \) with \(|\beta| = m_j \) and \(j = 1, \ldots, l \). Suppose that \(T_3 \) is bounded from \(L^r(R^n) \) to \(L^s(R^n) \) for any \(r, s \in (1, +\infty] \) with \(1 < r < n/\delta \) and \(1/s = 1/r - \delta/n \). Then \(T_3^A \) is bounded from \(B_2^\alpha(R^n) \) to \(CMO(R^n) \).

Theorem 4. Let \(0 \leq \delta < n \), \(1 < p < n/\delta \), \(1/q = 1/p - \delta/n \) and \(D^\beta A_j \in BMO(R^n) \) for all \(\beta \) with \(|\beta| = m_j \) and \(j = 1, \ldots, l \). Suppose that \(\tilde{T}_3^A \) is bounded from \(L^r(R^n) \) to \(L^s(R^n) \) for any \(r, s \in (1, +\infty] \) with \(1 < r < n/\delta \) and \(1/s = 1/r - \delta/n \). Then \(\tilde{T}_3^A \) is bounded from \(HK_p(R^n) \) to \(K_\alpha^p(R^n) \) with \(\alpha = n(1 - 1/p) \).

Remark. Theorem 4 is also hold for nonhomogeneous Herz and Herz type Hardy space.

3. Proofs of Theorems

To prove the theorems, we need the following lemma.
Lemma 2. (see [6]) Let A be a function on \mathbb{R}^n and $D^\beta A \in L^q(\mathbb{R}^n)$ for $|\beta| = m$ and some $q > n$. Then

$$|R_m(A; x, y)| \leq C|x - y|^m \sum_{|\beta| = m} \left(\frac{1}{Q(x, y)} \int_{Q(x, y)} |D^\beta A(z)|^q dz \right)^{1/q},$$

where $Q(x, y)$ is the cube centered at x and having side length $5\sqrt{n}|x - y|$.

Proof of Theorem 1. It is only to prove that there exists a constant C_Q such that

$$\frac{1}{|Q|} \int_Q |T^A(f)(x) - C_Qdx| \leq C||f||_{L^{n/q}}$$

holds for any cube Q. Without loss of generality, we may assume $l = 2$. Fix a cube $Q = Q(x_0, d)$. Let $\tilde{Q} = 5\sqrt{n}Q$ and $\tilde{A}_j(x) = A_j(x) - \sum |\beta| = m \tilde{A}_jQ^\beta x^\beta$.

then $R_m(A_j; x, y) = R_m(\tilde{A}_j; x, y)$ and $D^\beta \tilde{A}_j = D^\beta A_j - (D^\beta A_j)Q^\beta$ for $|\beta| = m_j$.

We write, for $f_1 = f\chi_Q$ and $f_2 = f\chi_{R^c Q}$,

$$F^A_1(f)(x) = \int_{R^n} \prod_{j=1}^2 R_{m_{j+1}}(\tilde{A}_j; x, y) f_t(x, y) f(y) dy$$

$$= \int_{R^n} \prod_{j=1}^2 R_{m_{j+1}}(\tilde{A}_j; x, y) f_t(x, y) f_2(y) dy$$

$$+ \int_{R^n} \prod_{j=1}^2 R_{m_1} (\tilde{A}_j; x, y) f_t(x, y) f_1(y) dy$$

$$- \sum_{|\beta_1| = m_1} \frac{1}{\beta_1!} \int_{R^n} R_{m_2} (\tilde{A}_2; x, y) (x - y)^{\beta_1}$$

$$\times D^\beta \tilde{A}_2(x, y) f_t(x, y) f_1(y) dy$$

$$- \sum_{|\beta_2| = m_2} \frac{1}{\beta_2!} \int_{R^n} R_{m_1} (\tilde{A}_1; x, y) (x - y)^{\beta_2}$$

$$\times D^\beta \tilde{A}_1(x, y) f_t(x, y) f_1(y) dy$$

$$+ \sum_{|\beta_1|=m_1, |\beta_2|=m_2} \frac{1}{\beta_1!\beta_2!} \int_{R^n} (x - y)^{\beta_1 + \beta_2} D^\beta_1 \tilde{A}_1(x) D^\beta_2 \tilde{A}_2(x)$$

$$\times f_t(x, y) f_1(y) dy.$$

Then

$$\left| T^A(f)(x) - T^A(f_2)(x_0) \right|$$

$$= \left| ||F^A_1(f)(x)|| - ||F^A_1(f_2)(x_0)|| \right|$$
thus, by \(\| F_t^A(f)(x) - F_t^A(f_2)(x_0) \| \)
\[
\leq \left\| \prod_{j=1}^{2} R_m(\tilde{A}_j; x, y) \frac{F_t(x, y) f_1(y)}{|x - y|^m} \right\|
\]
\[
+ \left\| \sum_{|\beta_1| = m_1} \frac{1}{\beta_1!} \int_{\mathbb{R}^n} R_m(\tilde{A}_1; x, y)(x - y)^{\beta_1} D^{\beta_1} \tilde{A}_1(y) F_t(x, y, f_1(y)) dy \right\|
\]
\[
+ \left\| \sum_{|\beta_2| = m_2} \frac{1}{\beta_2!} \int_{\mathbb{R}^n} R_m(\tilde{A}_2; x, y)(x - y)^{\beta_2} D^{\beta_2} \tilde{A}_2(y) F_t(x, y, f_1(y)) dy \right\|
\]
\[
+ \left\| \sum_{|\beta_1| = m_1, |\beta_2| = m_2} \frac{1}{\beta_1! \beta_2!} \int_{\mathbb{R}^n} (x - y)^{\beta_1 + \beta_2} D^{\beta_1} \tilde{A}_1(y) D^{\beta_2} \tilde{A}_2(y) F_t(x, y, f_1(y)) dy \right\|
\]
\[
+ |T^A_3(f_2)(x) - T^A_3(f_2)(x_0)|
\]
\[
:= I_1(x) + I_2(x) + I_3(x) + I_4(x) + I_5(x),
\]

thus,
\[
\frac{1}{|Q|} \int_Q |T^A_3(f)(x) - T^A_3(f_2)(x_0)| dx
\]
\[
\leq \frac{1}{|Q|} \int_Q I_1(x) dx + \frac{1}{|Q|} \int_Q I_2(x) dx + \frac{1}{|Q|} \int_Q I_3(x) dx
\]
\[
+ \frac{1}{|Q|} \int_Q I_4(x) dx + \frac{1}{|Q|} \int_Q I_5(x) dx
\]
\[
:= I_1 + I_2 + I_3 + I_4 + I_5.
\]

Now, let us estimate \(I_1, I_2, I_3, I_4 \) and \(I_5 \), respectively. For \(I_1 \), by Lemma 2, we get, for \(x \in Q \) and \(y \in Q \),
\[
R_m(\tilde{A}_j; x, y) \leq C|x - y|^m \sum_{|\alpha_j| = m_j} \| D^{\alpha_j} A_j \|_{BMO},
\]

thus, by \((L^{n/\delta}, L^\infty) \)-boundedness of \(T_3 \), we get
\[
I_1 \leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_j| = m_j} \| D^{\alpha_j} A_j \|_{BMO} \right) \frac{1}{|Q|} \int_Q |T_3(f_1)(x)| dx
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\alpha_j| = m_j} \| D^{\alpha_j} A_j \|_{BMO} \right) \| T_3(f_1) \|_{L^\infty}.
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{\text{BMO}} \right) \|f\|_{L^{n/\delta}};
\]

For \(I_2 \), by \((L^p, L^q)\)-boundedness of \(T_\delta \) for \(1/q = 1/p - \delta/n \), \(n/\delta > p > 1 \) and Hölder inequality, we get

\[
I_2 \leq C \sum_{|\beta_2|=m_2} \|D^{\beta_2} A_2\|_{\text{BMO}} \sum_{|\beta_1|=m_1} \frac{1}{|Q|} \int_Q |T_\delta(D^{\beta_1} \tilde{A}_1 f_1)(x)| \, dx
\]

\[
\leq C \sum_{|\beta_2|=m_2} \|D^{\beta_2} A_2\|_{\text{BMO}} \times \sum_{|\beta_1|=m_1} \left(\frac{1}{|Q|} \int_{R^n} |D^{\beta_1} \tilde{A}_1 f_1(x)|^q \, dx \right)^{1/q}
\]

\[
\leq C \sum_{|\beta_2|=m_2} \|D^{\beta_2} A_2\|_{\text{BMO}} \times \sum_{|\beta_1|=m_1} |Q|^{-1/q} \left(\int_{R^n} |D^{\beta_1} \tilde{A}_1 f_1(x)|^p \, dx \right)^{1/p}
\]

\[
\leq C \sum_{|\beta_2|=m_2} \|D^{\beta_2} A_2\|_{\text{BMO}} \times |Q|^{-1/q} \left(\int_{R^n} |D^{\beta_1} A_1(x) - (D^{\beta_1} A_1)_Q|^q \, dx \right)^{1/q} \|f\|_{L^{n/\delta}}
\]

\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{\text{BMO}} \right) \|f\|_{L^{n/\delta}};
\]

For \(I_3 \), similar to the proof of \(I_2 \), we get

\[
I_3 \leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{\text{BMO}} \right) \|f\|_{L^{n/\delta}};
\]

Similarly, for \(I_4 \), choose \(1 < p < n/\delta \) and \(q, r_1, r_2 > 1 \) such that \(1/q = 1/p - \delta/n \) and \(1/r_1 + 1/r_2 + p\delta/n = 1 \), we obtain, by Hölder inequality,

\[
I_4 \leq C \sum_{|\beta_1|=m_1, |\beta_2|=m_2} \frac{1}{|Q|} \int_Q |T_\delta(D^{\beta_1} \tilde{A}_1 D^{\beta_2} \tilde{A}_2 f_1)(x)| \, dx
\]

\[
\leq C \sum_{|\beta_1|=m_1, |\beta_2|=m_2} \left(\frac{1}{|Q|} \int_{R^n} |T_\delta(D^{\beta_1} \tilde{A}_1 D^{\beta_2} \tilde{A}_2 f_1)(x)|^q \, dx \right)^{1/q}
\]
\[
\begin{align*}
\leq & \; C \sum_{|\beta| = m_1, |\beta_2| = m_2} |Q|^{-1/\alpha} \left(\int_{R^n} |D^{\beta_1} \tilde{A}_1(x) D^{\beta_2} \tilde{A}_2(x) f_1(x)|^p \, dx \right)^{1/p} \\
\leq & \; C \sum_{|\beta| = m_1, |\beta_2| = m_2} \left(\frac{1}{|Q|} \int_{Q} |D^{\beta_1} \tilde{A}_1(x)|^{p_{r_1}} \, dx \right)^{1/p_{r_1}} \\
\times & \left(\frac{1}{|Q|} \int_{Q} |D^{\beta_2} \tilde{A}_2(x)|^{p_{r_2}} \, dx \right)^{1/p_{r_2}} \|f\|_{L^{n/s}} \\
\leq & \; C \sum_{j=1}^{2} \left(\sum_{|\beta| = m_j} \|D^{\beta} A_j\|_{BMO} \right) \|f\|_{L^{n/s}} \\
\end{align*}
\]

For \(I_5 \), we write
\[
F^\#_1(f_2)(x) - F^\#_1(f_2)(x_0) \\
= \int_{R^n} \left(\frac{F_1(x, y)}{|x-y|^m} - \frac{F_1(x_0, y)}{|x_0-y|^m} \right) \prod_{j=1}^{2} R_{m_j}(\tilde{A}_j; x, y) f_2(y) dy \\
+ \int_{R^n} \left[R_{m_1}(\tilde{A}_1; x, y) - R_{m_1}(\tilde{A}_1; x_0, y) \cdot \frac{R_{m_2}(\tilde{A}_2; x, y)}{|x-y|^m} \right] F_1(x_0, y) f_2(y) dy \\
+ \int_{R^n} \left[R_{m_2}(\tilde{A}_2; x, y) - R_{m_2}(\tilde{A}_2; x_0, y) \cdot \frac{R_{m_1}(\tilde{A}_1; x_0, y)}{|x-y|^m} \right] F_1(x, y) f_2(y) dy \\
- \sum_{|\beta| = m_1} \frac{1}{\beta_1!} \int_{R^n} \left[R_{m_2}(\tilde{A}_2; x, y) \cdot \frac{(x-y)^{\beta_1}}{|x-y|^m} \right] D^{\beta_1} \tilde{A}_1(y) f_2(y) dy \\
- \sum_{|\beta_2| = m_2} \frac{1}{\beta_2!} \int_{R^n} \left[R_{m_1}(\tilde{A}_1; x, y) \cdot \frac{(x-y)^{\beta_2}}{|x-y|^m} \right] D^{\beta_2} \tilde{A}_2(y) f_2(y) dy \\
+ \sum_{|\beta| = m_1, |\beta_2| = m_2} \frac{1}{\beta_1! \beta_2!} \int_{R^n} \left[\frac{(x-y)^{\beta_1+\beta_2}}{|x-y|^m} \right] F_1(x, y) \\
- \frac{(x-y)^{\beta_1+\beta_2}}{|x-y|^m} \left[F_1(x_0, y) \right] D^{\beta_1} \tilde{A}_1(y) D^{\beta_2} \tilde{A}_2(y) f_2(y) dy \\
= I^{(1)}_5 + I^{(2)}_5 + I^{(3)}_5 + I^{(4)}_5 + I^{(5)}_5 + I^{(6)}_5.
\]

By Lemma 1 and the following inequality (see [16])
\[
|b_{Q_1} - b_{Q_2}| \leq C \log(|Q_2|/|Q_1|) \|b\|_{BMO} \text{ for } Q_1 \subset Q_2,
\]
we know that, for $x \in Q$ and $y \in 2^{k+1} \hat{Q} \setminus 2^k \hat{Q}$,

$$|R_{m_j}(\tilde{A}_j; x, y)| \leq C|x-y|^{m_j} \sum_{|\beta|=m_j} (||D^\beta A_j||_{BMO}$$

$$+ ||(D^\beta A_j)_{\tilde{Q}(x,y)} - (D^\beta A_j)_{\hat{Q}}||)$$

$$\leq Ck|x-y|^{m_j} \sum_{|\beta|=m_j} ||D^\beta A_j||_{BMO}.$$

Note that $|x - y| \sim |x_0 - y|$ for $x \in Q$ and $y \in R^n \setminus \hat{Q}$, we obtain, by the condition of F_t,

$$||f^{(1)}|| \leq C \int_{R^n} \left(\frac{|x - x_0|}{|x_0 - y|^{n+1-\delta}} + \frac{|x - x_0|^{\infty}}{|x_0 - y|^{n+\varepsilon - \delta}} \right)$$

$$\times \prod_{j=1}^{2} ||R_{m_j}(\tilde{A}_j; x, y)||f_2(y)||dy$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j} A_j||_{BMO} \right)$$

$$\times \sum_{k=0}^{\infty} \int_{2^{k+1} \hat{Q} \setminus 2^k \hat{Q}} k^2 \left(\frac{|x - x_0|}{|x_0 - y|^{n+1-\delta}} + \frac{|x - x_0|^{\infty}}{|x_0 - y|^{n+\varepsilon - \delta}} \right) ||f(y)||dy$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j} A_j||_{BMO} \right) \sum_{k=1}^{\infty} k^2 (2^{-k} + 2^{-\varepsilon k}) ||f||_{L^{n/\delta}}$$

$$\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j} A_j||_{BMO} \right) ||f||_{L^{n/\delta}}.$$

For $I_j^{(2)}$, by the formula (see [6]):

$$R_{m_j}(\tilde{A}_j; x, y) - R_{m_j}(\tilde{A}_j; x_0, y) = \sum_{|\gamma|<m} \frac{1}{|\gamma|!} R_{m-|\gamma|}(D^\gamma \tilde{A}_j; x, x_0)(x - y)^\gamma$$

and Lemma 1, we have

$$|R_{m_j}(\tilde{A}_j; x, y) - R_{m_j}(\tilde{A}_j; x_0, y)|$$

$$\leq C \sum_{|\gamma|<m_j} \sum_{|\beta|=m_j} |x - x_0|^{m_j-|\gamma|} |x - y|^{|\gamma|} ||D^\beta A_j||_{BMO}.$$
thus

\[||I_5^{(2)}|| \leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) \times \sum_{k=0}^{\infty} \int_{2^{k+1}Q \setminus 2^kQ} k^{\frac{1}{2k+1}} |f(y)| dy \]

\[\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) ||f||_{L^{n/\delta}} \]

Similarly,

\[||I_5^{(3)}|| \leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) ||f||_{L^{n/\delta}} \]

For \(I_5^{(4)} \), taking \(r > 1 \) such that \(1/r + \delta/n = 1 \), then

\[||I_5^{(4)}|| \leq C \sum_{|\beta_j|=m_j} \int_{R^n} \left| \frac{(x-y)^{\beta_1}F_1(x,y) - (x_0-y)^{\beta_1}F_1(x,y)}{|x-y|^m} \right| \]

\[\times |R_{m_2}(\tilde{A}_2;x,y)||D^{\beta_1}\tilde{A}_1(y)||f_2(y)| dy | R_{m_2}(\tilde{A}_2;x_0,y) | \]

\[\times \int_{R^n} \left| \frac{(x-y)^{\beta_2}F_2(x_0,y)}{|x_0-y|^m} \right||D^{\beta_2}\tilde{A}_1(y)||f_2(y)| dy \]

\[\leq C \sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \sum_{k=1}^{\infty} k(2^{-k} + 2^{-\epsilon k}) \]

\[\times \left(\frac{1}{|2^k Q|} \int_{2^k Q} |D^{\beta_1}\tilde{A}_1(y)|^r dy \right)^{1/r} ||f||_{L^{n/\delta}} \]

\[\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) ||f||_{L^{n/\delta}} \]

Similarly,

\[||I_5^{(5)}|| \leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) ||f||_{L^{n/\delta}} \]
For $I_5^{(6)}$, taking $r_1, r_2 > 1$ such that $\delta/n + 1/r_1 + 1/r_2 = 1$, then

$$
||I_5^{(6)}||
\leq C \sum_{|\beta_1| = m_1, |\beta_2| = m_2} \int_{\mathbb{R}^n} \left\| \frac{(x-y)^{\delta_1 + \delta_2} F_i(x,y)}{|x-y|^m} \right\|_{L^\infty} \bigg(\sum_{|\beta_1| = m_1, |\beta_2| = m_2} \left(2^{-k} + 2^{-\varepsilon k} \right) ||f||_{L^{n/\delta}} \bigg)

\times \left(\frac{1}{|2^k Q|} \int_{2^k Q} |D^{\delta_1} \tilde{A}_1(y)|^{r_1} dy \right)^{1/r_1} \left(\frac{1}{|2^k Q|} \int_{2^k Q} |D^{\delta_2} \tilde{A}_2(y)|^{r_2} dy \right)^{1/r_2}

\leq C \prod_{j=1}^2 \left(\sum_{|\beta_j| = m_j} ||D^{\delta_j} A_j||_{BMO} \right) ||f||_{L^{n/\delta}}.

Thus

$$
I_5 \leq C \prod_{j=1}^2 \left(\sum_{|\beta_j| = m_j} ||D^{\delta_j} A_j||_{BMO} \right) ||f||_{L^{n/\delta}}.
$$

This completes the proof of Theorem 1.

Proof of Theorem 2. It is only to show that there exists a constant $C > 0$ such that for every H^1-atom a (that is that a satisfies: supp $a \subset Q = Q(x_0, d)$, $||a||_{L^\infty} \leq |Q|^{-1}$ and $\int a(y)dy = 0$ (see [9])), the following holds:

$$
||\tilde{T}_\delta^A(a)||_{L^{n/(n-\delta)}} \leq C.
$$

Without loss of generality, we may assume $l = 2$. Write

$$
\int_{\mathbb{R}^n} \left[\tilde{T}_\delta^A(a)(x) \right]^{n/(n-\delta)} dx
\leq \int_{|x-x_0| \leq 2d} + \int_{|x-x_0| > 2d} \left[\tilde{T}_\delta^A(a)(x) \right]^{n/(n-\delta)} dx := J_1 + J_2.
$$

For J_1, by the (L^p, L^q)-boundedness of \tilde{T}_δ^A for $1/q = 1/p - \delta/n$, $n/\delta > p > 1$, we get

$$
J_1 \leq C ||\tilde{T}_\delta^A(a)||_{L^q}^{n/(n-\delta)q} ||2Q|^{1-n/((n-\delta)q)}
\leq C ||a||_{L^p}^{n/(n-\delta)} |Q|^{1-n/((n-\delta)q)} \leq C.
$$

To obtain the estimate of J_2, we denote that

$$
\tilde{A}_j(x) = A_j(x) - \sum_{|\beta_j| = m_j} \frac{1}{|Q|} (D^{\delta_j} A_j)_{2Qx^3}.
$$
This completes the proof of Theorem 2. We write, by the vanishing moment of \(a \),

\[
\begin{align*}
\mathcal{F}_t^4(a)(x) &= \int_{\mathbb{R}^n} \left[\frac{F_t(x, y)}{|x - y|^m} - \frac{F_t(x, x_0)}{|x - x_0|^m} \right] R_{m_1}(\tilde{A}; x, y) R_{m_2}(\tilde{A}; x, y) a(y) dy \\
+ \int_{\mathbb{R}^n} \frac{F_t(x, x_0)}{|x - x_0|^m} \left[R_{m_1}(\tilde{A}; x, y) R_{m_2}(\tilde{A}; x, y) - R_{m_1}(\tilde{A}_1; x, x_0) R_{m_2}(\tilde{A}_2; x, x_0) \right] a(y) dy \\
- \sum_{|k| = m_2 \leq m} \int_{\mathbb{R}^n} \left[\frac{F_t(x, y)(x - y)^{\beta_2}}{|x - y|^m} - \frac{F_t(x, x_0)(x - x_0)^{\beta_2}}{|x - x_0|^m} \right] R_{m_1}(\tilde{A}_1; x, y) a(y) dy \\
\times D^{\beta_2} \tilde{A}_2(x) a(y) dy \\
- \sum_{|k| = m_1 \leq m} \int_{\mathbb{R}^n} \left[\frac{F_t(x, y)(x - y)^{\beta_1}}{|x - y|^m} - \frac{F_t(x, x_0)(x - x_0)^{\beta_1}}{|x - x_0|^m} \right] R_{m_2}(\tilde{A}_2; x, y) a(y) dy \\
\times D^{\beta_1} \tilde{A}_1(x) a(y) dy \\
+ \sum_{|k| = m_1, |k| = m_2 \leq m} \int_{\mathbb{R}^n} \left[\frac{F_t(x, y)(x - y)^{\beta_1 + \beta_2}}{|x - y|^m} - \frac{K(x, x_0)(x - x_0)^{\beta_1 + \beta_2}}{|x - x_0|^m} \right] D^{\beta_1} \tilde{A}_1(x) D^{\beta_2} \tilde{A}_2(x) a(y) dy,
\end{align*}
\]

similar to the proof of Theorem 1, we obtain

\[
J_2 \leq C \left[\prod_{j=1}^2 \left(\sum_{|k| = m_j} \|D^k A_j\|_{BMO} \right) \right]^{n/(n-\delta)} \\
\times \sum_{k=1}^{\infty} k^2 \left[2^{-kn/(n-\delta)} + 2^{-kn/\delta} \right] \\
\leq C.
\]

This completes the proof of Theorem 2. \(\square \)

Proof of Theorem 3. It suffices to prove that there exists a constant \(C_Q \) such that

\[
\frac{1}{|Q|} \int_Q |T^4_{B^\delta}(f)(x) - C_Q| dx \leq C ||f||_{B^\delta}
\]
holds for any cube $Q = Q(0, d)$ with $d > 1$. Without loss of generality, we may assume $l = 2$. Fix a cube $Q = Q(0, d)$ with $d > 1$. Let $\tilde{Q} = 5\sqrt{n}Q$ and $\tilde{A}_j(x) = A_j(x) - \sum_{|\beta| = m} \frac{1}{m!}(D^\beta A_j)_Q x^\beta$, then $R_m(A_j; x, y) = R_m(\tilde{A}_j; x, y)$ and $D^\beta \tilde{A}_j = D^\beta A_j - (D^\beta A_j)_Q$ for $|\beta| = m_j$. We write, for $f_1 = f \chi_Q$ and $f_2 = f \chi_{\tilde{Q}}$,

$$F^4_2(f)(x) = \int_{R^n} \frac{\prod_{j=1}^{2} R_{m_j+1}(\tilde{A}_j; x, y)}{|x - y|^m} F_1(x, y) f(y)\,dy$$

$$= \int_{R^n} \frac{\prod_{j=1}^{2} R_{m_j+1}(\tilde{A}_j; x, y)}{|x - y|^m} F_1(x, y) f_2(y)\,dy$$

$$+ \int_{R^n} \frac{\prod_{j=1}^{2} R_{m_j}(\tilde{A}_j; x, y)}{|x - y|^m} F_1(x, y) f_1(y)\,dy$$

$$- \sum_{|\beta_1| = m_1} \frac{1}{\beta_1!} \int_{R^n} \frac{R_m(\tilde{A}_2; x, y)(x - y)^{\beta_1}}{|x - y|^m} D^{\beta_1} \tilde{A}_1(y) F_1(x, y) f_1(y)\,dy$$

$$- \sum_{|\beta_2| = m_2} \frac{1}{\beta_2!} \int_{R^n} \frac{R_m(\tilde{A}_1; x, y)(x - y)^{\beta_2}}{|x - y|^m} D^{\beta_2} \tilde{A}_2(y) F_1(x, y) f_1(y)\,dy$$

$$+ \sum_{|\beta_1| = m_1, |\beta_2| = m_2} \frac{1}{\beta_1! \beta_2!} \int_{R^n} \frac{(x - y)^{\beta_1 + \beta_2}}{|x - y|^m} D^{\beta_1} \tilde{A}_1(y) D^{\beta_2} \tilde{A}_2(y) F_1(x, y) f_1(y)\,dy,$$

then

$$\frac{1}{|Q|} \int_Q \left| T_{x}^4(f)(x) - T_{x}^2(f_2)(0) \right| dx$$

$$\leq \frac{1}{|Q|} \int_Q \left\| \int_{R^n} \frac{\prod_{j=1}^{2} R_{m_j}(\tilde{A}_j; x, y)}{|x - y|^m} F_1(x, y) f_1(y)\,dy \right\| dx$$

$$+ \frac{1}{|Q|} \int_Q \left\| \sum_{|\beta_1| = m_1} \frac{1}{\beta_1!} \int_{R^n} \frac{R_m(\tilde{A}_2; x, y)(x - y)^{\beta_1}}{|x - y|^m} D^{\beta_1} \tilde{A}_1(y) F_1(x, y) f_1(y)\,dy \right\| dx$$

$$+ \frac{1}{|Q|} \int_Q \left\| \sum_{|\beta_2| = m_2} \frac{1}{\beta_2!} \int_{R^n} \frac{R_m(\tilde{A}_1; x, y)(x - y)^{\beta_2}}{|x - y|^m} D^{\beta_2} \tilde{A}_2(y) F_1(x, y) f_1(y)\,dy \right\| dx$$

$$+ \frac{1}{|Q|} \int_Q \left\| \sum_{|\beta_1| = m_1, |\beta_2| = m_2} \frac{1}{\beta_1! \beta_2!} \int_{R^n} \frac{(x - y)^{\beta_1 + \beta_2}}{|x - y|^m} D^{\beta_1} \tilde{A}_1(y) D^{\beta_2} \tilde{A}_2(y) F_1(x, y) f_1(y)\,dy \right\|.$$
Similar to the proof of Theorem 1, we get, for $1/s = 1/r - \delta/n$, $1 < r < p$, $1 < t_1, t_2 < \infty$ and $1/t_1 + 1/t_2 + r/p = 1$,

\[
L_1 \leq C \prod_{j=1}^2 \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{BMO} \right) \frac{1}{|Q|} \int_Q |T_\delta(f_1)(x)| dx
\]
\[
\leq C \prod_{j=1}^2 \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{BMO} \right) \left(\frac{1}{|Q|} \int_Q |T_\delta(f_1)(x)|^q dx \right)^{1/q}
\]
\[
\leq C \prod_{j=1}^2 \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{BMO} \right) d^{-n(1/p-\delta/n)} \|\chi_Q\|_{L^p} \|f\|_{B^s_p};
\]

\[
L_2 \leq C \sum_{|\beta_2|=m_2} \|D^{\beta_2} A_2\|_{BMO} \sum_{|\beta_1|=m_1} \frac{1}{|Q|} \int_Q |T_\delta(D^{\beta_1} \tilde{A}_1 f_1)(x)| dx
\]
\[
\leq C \sum_{|\beta_2|=m_2} \|D^{\beta_2} A_2\|_{BMO} \sum_{|\beta_1|=m_1} \left(\frac{1}{|Q|} \int_{R^n} |T_\delta(D^{\beta_1} \tilde{A}_1 f_1)(x)|^s dx \right)^{1/s}
\]
\[
\leq C \sum_{|\beta_2|=m_2} \|D^{\beta_2} A_2\|_{BMO} \sum_{|\beta_1|=m_1} |Q|^{-1/s} \|D^{\beta_1} A_1 - (D^{\beta_1} A_1)_Q\|_{L^r} f_1\|_{L^p}
\]
\[
\leq C \sum_{|\beta_2|=m_2} \|D^{\beta_2} A_2\|_{BMO} \times \sum_{|\beta_1|=m_1} \left(\frac{1}{|Q|} \int_Q |D^{\beta_1} \tilde{A}_1(y)|^{pr/(p-r)} dy \right)^{(p-r)/pr} |Q|^{\delta/n-1/p} \|f_1\|_{L^p}.
\]
\[
\begin{align*}
L_4 & \leq C \sum_{|\beta_1| = m_1, |\beta_2| = m_2} \frac{1}{|Q|} \int_Q |T_\delta(D^{\beta_1} \tilde{A}_1 D^{\beta_2} \tilde{A}_2 f_1)(x)|dx \\
& \leq C \sum_{|\beta_1| = m_1, |\beta_2| = m_2} \left(\frac{1}{|Q|} \int_{R^n} |T_\delta(D^{\beta_1} \tilde{A}_1 D^{\beta_2} \tilde{A}_2 f_1)(x)|^s dx \right)^{1/s} \\
& \leq C \sum_{|\beta_1| = m_1, |\beta_2| = m_2} |Q|^{-1/s} \left(\int_{R^n} |D^{\beta_1} \tilde{A}_1(x) D^{\beta_2} \tilde{A}_2(x) f_1(x)|^r dx \right)^{1/r} \\
& \leq C \sum_{|\beta_1| = m_1} \left(\frac{1}{|Q|} \int_Q |D^{\beta_1} \tilde{A}_1(x)|^{r_{t_1}} dx \right)^{1/r_{t_1}} \\
& \times \sum_{|\beta_2| = m_2} \left(\frac{1}{|Q|} \int_Q |D^{\beta_2} \tilde{A}_2(x)|^{r_{t_2}} dx \right)^{1/r_{t_2}} |Q|^{\delta/n - 1/p} \|
 f_1 \|_{L^p} \\
& \leq C \sum_{j=1}^2 \left(\sum_{|\beta_j| = m_j} \|D^{\beta_j} A_j\|_{BMO} \right) \|f\|_{B^p;}
\end{align*}
\]

For \(L_5 \), we write, for \(x \in Q \),
\[
F^\tilde{A}_i(f_2)(x) - F^\tilde{A}_i(f_2)(0)
\]
\[
= \int_{R^n} \left(\frac{F_i(x, y)}{|x - y|^m} - \frac{F_i(0, y)}{|y|^m} \right) \prod_{j=1}^2 R_{m_j}(\tilde{A}_j; x, y) f_2(y) dy \\
+ \int_{R^n} \left(R_{m_1}(\tilde{A}_1; x, y) - R_{m_1}(\tilde{A}_1; 0, y) \right) \frac{R_{m_2}(\tilde{A}_2; x, y)}{|y|^m} F_i(0, y) f_2(y) dy \\
+ \int_{R^n} \left(R_{m_2}(\tilde{A}_2; x, y) - R_{m_2}(\tilde{A}_2; 0, y) \right) \frac{R_{m_1}(\tilde{A}_1; 0, y)}{|y|^m} F_i(0, y) f_2(y) dy \\
- \sum_{|\beta_1| = m_1} \frac{1}{|\beta_1|!} \int_{R^n} \left[\frac{R_{m_2}(\tilde{A}_2; x, y)(x - y)^{\beta_1}}{|x - y|^m} F_i(x, y) \right]
\]
\[- \frac{R_{m_2}(\hat{A}_2; 0, y)(-y)^{\beta_1}F_1(0, y)}{|y|^m} D^{\beta_1}\hat{A}_1(y)f_2(y)dy \]
\[- \sum_{|\beta_1|=m_2} \frac{1}{\beta_1!} \int_{R^n} \left[\frac{R_{m_1}(\hat{A}_1; x, y)(x-y)^{\beta_2}}{|x-y|^m} F_1(x, y) \right] \]
\[- \frac{R_{m_1}(\hat{A}_1; 0, y)(-y)^{\beta_2}F_1(0, y)}{|y|^m} \]
\[\sum_{|\beta_1|=m_1, |\beta_2|=m_2} \frac{1}{\beta_1!\beta_2!} \int_{R^n} \left[\frac{(x-y)^{\beta_1+\beta_2}}{|x-y|^m} F_1(x, y) - \frac{(-y)^{\beta_1+\beta_2}}{|y|^m} F_1(0, y) \right] \]
\[D^{\beta_2}\hat{A}_2(y)f_2(y)dy \]
\[= L_5^{(1)} + L_5^{(2)} + L_5^{(3)} + L_5^{(4)} + L_5^{(5)} + L_5^{(6)} \]

Similar to the proof of Theorem 1, we get, for $1 < r_1, r_2 < \infty$ and $1/r_1 + 1/r_2 + 1/p = 1$,

\[\|L_5^{(1)}\| \leq C \int_{R^n} \left(\frac{|x|}{|y|^{m+n+1-\delta}} + \frac{|x|^\varepsilon}{|y|^{m+n+r-\delta}} \right) \prod_{j=1}^{2} |R_{m_j}(\hat{A}_j; x, y)||f_2(y)|dy \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) \]
\[\times \sum_{k=0}^{\infty} \int_{2^{k+1}2^{k}\vartriangle 2^{k}} k^2 \left(\frac{|x|}{|y|^{n+1-\delta}} + \frac{|x|^\varepsilon}{|y|^{n+r-\delta}} \right) |f(y)|dy \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) \]
\[\times \sum_{k=0}^{\infty} k^2(2^{-k} + 2^{-\varepsilon k}) (2^k, d)^{n(1/p-\delta/n)} ||f||_{L^p(A_2\vartriangle A_1)} \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) \sum_{k=1}^{\infty} k^2(2^{-k} + 2^{-\varepsilon k}) ||f||_{B^{2}_{p}} \]
\[\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) ||f||_{B^{2}_{p}} ;
\]
\[\|L_5^{(2)}\| \leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) \sum_{k=0}^{\infty} \int_{2^{k+1}2^{k}\vartriangle 2^{k}} k \frac{|x|}{|y|^{n+1-\delta}} |f(y)|dy \]
\[
\begin{align*}
\|L^3_N\| & \leq C \prod_{j=1}^2 \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{BMO} \right) \|f\|_{R^+_p} \\
\|L^4_N\| & \leq C \prod_{j=1}^2 \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{BMO} \right) \|f\|_{B^+_p} \\
\|L^5_N\| & \leq C \prod_{j=1}^2 \left(\sum_{|\beta_j|=m_j} \int_{R^n} \left| \frac{(x-y)^{\beta_j} F_k(x,y)}{|x-y|^m} - \frac{(-y)^{\beta_j} F_k(0,y)}{|y|^m} \right| \right) \\
& \quad \times |R_{m_2}(\tilde{A}_2;x,y)| |D^{\beta_j} \tilde{A}_1(y)||f_2(y)|dy \\
& \quad + C \sum_{|\beta_2|=m_2} \left| D^{\beta_2} A_2 \right|_{BMO} \\
& \quad \times \sum_{k=1}^\infty \left(2^{-k} + 2^{-\varepsilon k} \right) \frac{|D^{\beta_2} A_2\|_{BMO}|f_2(y)|}{|y|^m} \right) \\
& \quad \times \frac{1}{|2^k Q|} \int_{2^k Q} |D^{\beta_1} \tilde{A}_1(y)|^{p'} dy \\
& \leq C \prod_{j=1}^2 \left(\sum_{|\beta_j|=m_j} \|D^{\beta_j} A_j\|_{BMO} \right) \|f\|_{B^+_p} \\
\|L^6_N\| & \leq C \prod_{j=1}^2 \left(\sum_{|\beta_j|=m_j} \int_{R^n} \left| \frac{(x-y)^{\beta_j+\beta_2} F_k(x,y)}{|x-y|^m} - \frac{(-y)^{\alpha_1+\alpha_2} F_k(0,y)}{|y|^m} \right| \right) \\
& \quad \times |D^{\beta_1} \tilde{A}_1(y)||D^{\beta_2} \tilde{A}_2(y)||f_2(y)|dy \\
& \leq C \sum_{k=1}^\infty \left(2^{-k} + 2^{-\varepsilon k} \right) \frac{|D^{\beta_2} A_2\|_{BMO}|f_2(y)|}{|y|^m} \right) \\
& \quad \times \sum_{|\beta_1|=m_1} \left(2^{-\varepsilon k} \right) \frac{|D^{\beta_1} \tilde{A}_1(y)|^{r_1} dy}{|y|^m} \\
& \quad \times \sum_{|\beta_2|=m_2} \left(2^{-\varepsilon k} \right) \frac{|D^{\beta_2} \tilde{A}_2(y)|^{r_2} dy}{|y|^m} \\
\end{align*}
\]
\[
\leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) ||f||_{B^*_p}.
\]
Thus
\[
L_5 \leq C \prod_{j=1}^{2} \left(\sum_{|\beta_j|=m_j} ||D^{\beta_j}A_j||_{BMO} \right) ||f||_{B^*_p}.
\]
This finishes the proof of Theorem 3.

Proof of Theorem 4. Without loss of generality, we may assume \(l = 2 \). Let \(f \in H\dot{K}_p(R^n) \), by Lemma 1, \(f = \sum_{j=-\infty}^{\infty} \lambda_j a_j \), where \(a_j \) are the central \((n(1 - 1/p), p)\)-atom with \(\text{supp} a_j \subset B_j = B(0, 2^j) \) and \(||f||_{H\dot{K}_p} \sim \sum_j |\lambda_j| \). We write
\[
||\tilde{T}^A_{\delta}(f)||_{K_q^p} = \sum_{k=-\infty}^{\infty} 2^{kn(1-1/p)} ||\chi_k \tilde{T}^A_{\delta}(f)||_{L^q}
\]
\[
\leq \sum_{k=-\infty}^{\infty} 2^{kn(1-1/p)} \sum_{j=-\infty}^{k-1} |\lambda_j| ||\chi_k \tilde{T}^A_{\delta}(a_j)||_{L^q}
\]
\[
+ \sum_{k=-\infty}^{\infty} 2^{kn(1-1/p)} \sum_{j=k}^{\infty} |\lambda_j| ||\chi_k \tilde{T}^A_{\delta}(a_j)||_{L^q} = M_1 + M_2.
\]
For \(M_2 \), by the \((L^p, L^q)\)-boundedness of \(\tilde{T}^A_{\delta} \) for \(1/q = 1/p - \delta/n \), we get
\[
M_2 \leq C \sum_{k=-\infty}^{\infty} 2^{kn(1-1/p)} \sum_{j=k}^{\infty} |\lambda_j| ||a_j||_{L^p}
\]
\[
\leq C \sum_{k=-\infty}^{\infty} 2^{kn(1-1/p)} \sum_{j=k}^{\infty} |\lambda_j| 2^{jn(1/p-1)}
\]
\[
\leq C \sum_{j=-\infty}^{\infty} |\lambda_j| \sum_{k=-\infty}^{j} 2^{(k-j)n(1-1/p)}
\]
\[
\leq C \sum_{j=-\infty}^{\infty} |\lambda_j| \leq C ||f||_{H\dot{K}_p}.
\]
To obtain the estimate of \(M_1 \), we denote that
\[
\hat{A}_j(x) = A_j(x) - \sum_{|\beta_j|=m_j} \frac{1}{|\beta_j|!} (D^{\beta_j}A_j)_{2Qx^\beta}.
\]
Then \(Q_{m_1}(A_j; x, y) = Q_{m_1}(\hat{A}_j; x, y) \). We write, by the vanishing moment of \(a \),
\[
\hat{F}^A_t(a)(x)
\]
\[
= \int_{R^n} \left[\frac{F_t(x, y)}{|x-y|^m} - \frac{F_t(x, 0)}{|x|^m} \right] R_{m_1}(\hat{A}_1; x, y) R_{m_2}(\hat{A}_2; x, y) a(y) dy
\]
+ \int_{\mathbb{R}^n} \frac{F_i(x,0)}{|x|^m} |R_{m_1}(\hat{A}_1;x,y)R_{m_2}(\hat{A}_2;x,y)\]
\quad - R_{m_1}(\hat{A}_1;x,0)R_{m_2}(\hat{A}_2;x,0)|a(y)|dy
\quad \times R_{m_1}(\hat{A}_1;x,y)D^{\beta_2}\hat{A}_2(x)a(y)dy
\quad - \sum_{|j|_1 = m_1} \int_{\mathbb{R}^n} \frac{F_i(x,0)x^{\beta_1}}{|x|^m} |R_{m_2}(\hat{A}_2;x,y) - R_{m_2}(\hat{A}_2;x,0)|
\quad \times D^{\beta_1}\hat{A}_1(x)a(y)dy
\quad + \sum_{|j|_1 = m_1, |j|_2 = m_2} \int_{\mathbb{R}^n} \frac{F_i(x,y)(x-y)^{\beta_1+\beta_2}}{|x-y|^m} - \frac{F_i(x,0)x^{\beta_1+\beta_2}}{|x|^m}
\quad \times D^{\beta_1}\hat{A}_1(x)D^{\beta_2}\hat{A}_2(x)a(y)dy.

Similar to the proof of Theorem 1 and Theorem 2, we get

\[M_1 \leq C \prod_{j=1}^2 \left(\sum_{|j|_j = m_j} \||D^{\beta_j}A_j||_{BMO} \right) \]
\times \sum_{k=-\infty}^{\infty} 2^{kn(1-\delta/n)} \sum_{j=-\infty}^{k-1} |\lambda_j| \left[\frac{2^j}{2k(n+\epsilon-\delta)} + \frac{2^{j\epsilon}}{2k(n+\epsilon-\delta)} \right] \]
\leq C \prod_{j=1}^2 \left(\sum_{|j|_j = m_j} \||D^{\beta_j}A_j||_{BMO} \right) \sum_{j=-\infty}^{\infty} |\lambda_j| \sum_{k=j+1}^{\infty} [2^{j-k} + 2^{j-k}] \]
\leq C \prod_{j=1}^2 \left(\sum_{|j|_j = m_j} \||D^{\beta_j}A_j||_{BMO} \right) \sum_{j=-\infty}^{\infty} |\lambda_j| \]
\leq C \prod_{j=1}^2 \left(\sum_{|j|_j = m_j} \||D^{\beta_j}A_j||_{BMO} \right) \||f||_{L^p}.

This completes the proof of Theorem 4. \qed
4. Applications

Now we shall apply the theorems of the paper to some particular operators such as Littlewood-Paley operators and Marcinkiewicz operators.

Application 1. Littlewood-Paley operator.

Fixed $0 \leq \delta < n$, $\varepsilon > 0$ and $\mu > (3n + 2 - 2\delta)/n$. Let ψ be a fixed function which satisfies the following properties:

1. $\int_{\mathbb{R}^n} \psi(x)dx = 0$,
2. $|\psi(x)| \leq C(1 + |x|)^{-(n+1-\delta)}$,
3. $|\psi(x + y) - \psi(x)| \leq C|y|^\varepsilon(1 + |x|)^{-(n+1+\varepsilon-\delta)}$ when $2|y| < |x|$;

We denote that $\Gamma(x) = \{(y, t) \in \mathbb{R}^{n+1} : |x - y| < t\}$ and the characteristic function of $\Gamma(x)$ by $\chi_{\Gamma(x)}$. The Littlewood-Paley multilinear operators are defined by

$$g^A_\psi(f)(x) = \left(\int_0^\infty \left|F_t^A(f)(x)\right|^2 \frac{dt}{t}\right)^{1/2},$$

$$S^A_\psi(f)(x) = \left[\int_{\Gamma(x)} \left|F_t^A(f)(x,y)\right|^2 \frac{dydt}{t^{n+1}}\right]^{1/2},$$

and

$$g^A_\mu(f)(x) = \left[\int_{\mathbb{R}^{n+1}_+} \left(\frac{t}{|x - y|}\right)^{\frac{n}{2}+\mu} \left|F_t^A(f)(x,y)\right|^2 \frac{dydt}{t^{n+1}}\right]^{1/2},$$

where

$$F_t^A(f)(x,y) = \int_{\mathbb{R}^n} \prod_{j=1}^l \frac{R_{m_j+1}(A_j; x, y)}{|x - y|^{m_j}} \psi_t(x - y) f(y) dy,$$

and $\psi_t(x) = t^{-n+\delta} \psi(x/t)$ for $t > 0$. The variants of g^A_ψ, S^A_ψ and g^A_μ are defined by

$$\tilde{g}^A_\psi(f)(x) = \left(\int_0^\infty \left|\tilde{F}_t^A(f)(x)\right|^2 \frac{dt}{t}\right)^{1/2},$$

$$\tilde{S}^A_\psi(f)(x) = \left[\int_{\Gamma(x)} \left|\tilde{F}_t^A(f)(x,y)\right|^2 \frac{dydt}{t^{n+1}}\right]^{1/2},$$

and

$$\tilde{g}^A_\mu(f)(x) = \left[\int_{\mathbb{R}^{n+1}_+} \left(\frac{t}{|x - y|}\right)^{\frac{n}{2}+\mu} \left|\tilde{F}_t^A(f)(x,y)\right|^2 \frac{dydt}{t^{n+1}}\right]^{1/2},$$

where

$$\tilde{F}_t^A(f)(x) = \int_{\mathbb{R}^n} \prod_{j=1}^l \frac{Q_{m_j+1}(A_j; x, y)}{|x - y|^{m_j}} \psi_t(x - y) f(y) dy.$$
and
\[F^A_t(f)(x, y) = \int_{\mathbb{R}^n} \prod_{j=1}^{\gamma} Q_{m_j+1}(A_j; x, z) \frac{|x-z|^\alpha \psi_t(y-z)}{|x-z|^m} f(z) dz. \]

Set \(F_t(f)(y) = f * \psi_t(y) \). We also define that
\[g_\psi(f)(x) = \left(\int_0^\infty |F_t(f)(x)|^2 \frac{dt}{t} \right)^{1/2}, \]
\[S_\psi(f)(x) = \left(\int \int_{\Gamma(x)} |F_t(f)(y)|^2 \frac{dydt}{t^{n+1}} \right)^{1/2}, \]
and
\[g_\mu(f)(x) = \left(\int \int_{\mathbb{R}^n_+} \left(\frac{t}{t + |x-y|} \right)^{n/2} |F_t(f)(y)|^2 \frac{dydt}{t^{n+1}} \right)^{1/2}, \]
which are the Littlewood-Paley operators (see [17]). Let \(H \) be the space
\[H = \left\{ h : ||h|| = \left(\int_0^\infty |h(t)|^2 \frac{dt}{t} \right)^{1/2} < \infty \right\} \]
or
\[H = \left\{ h : ||h|| = \left(\int \int_{\mathbb{R}^n_+} |h(y,t)|^2 \frac{dydt}{t^{n+1}} \right)^{1/2} < \infty \right\}, \]
then, for each fixed \(x \in \mathbb{R}^n \), \(F^A_t(f)(x) \) and \(F^A_t(f)(x, y) \) may be viewed as the mapping from \([0, +\infty)\) to \(H \), and it is clear that
\[g_\psi^A(f)(x) = ||F^A_t(f)(x)||, \quad g_\mu(f)(x) = ||F_t(f)(x)||, \]
\[S_\psi^A(f)(x) = ||\chi_{\Gamma(x)} F^A_t(f)(x, y)||, \quad S_\psi(f)(x) = ||\chi_{\Gamma(x)} F_t(f)(y)|| \]
and
\[g_\mu^A(f)(x) = \left\| \left(\frac{t}{t + |x-y|} \right)^{n/2} F^A_t(f)(x, y) \right\|, \]
\[g_\mu(f)(x) = \left\| \left(\frac{t}{t + |x-y|} \right)^{n/2} F_t(f)(y) \right\|. \]
It is easily to see that \(g_\psi, S_\psi \) and \(g_\mu \) satisfy the conditions of Theorem 1, 2, 3 and 4, thus the conclusions of Theorem 1, 2, 3 and 4 hold for \(g_\psi^A \) and \(g_\mu^A \), \(S_\psi^A \) and \(S_\psi \), \(g_\psi^A \) and \(g_\mu^A \).

Application 2. Marcinkiewicz operator.

Fixed \(0 \leq \delta < n \), Fix \(\lambda > \max(1, 2n/(n + 2 - 2\delta)) \) and \(0 < \gamma \leq 1 \). Let \(\Omega \) be homogeneous of degree zero on \(\mathbb{R}^n \) with \(\int_{S^{n-1}} \Omega(x')d\sigma(x') = 0 \). Assume that \(\Omega \in Lip_\gamma(S^{n-1}) \). The Marcinkiewicz multilinear operators are defined by (see [12], [18])
\[\mu_\Omega^A(f)(x) = \left(\int_0^\infty |F^A_t(f)(x)|^2 \frac{dt}{t^n} \right)^{1/2}, \]
We also define that
\[
\mu^A_S(f)(x) = \left[\iint_{\Gamma(x)} |F^A_t(f)(x,y)|^2 \frac{dydt}{t^{n+3}} \right]^{1/2}
\]
and
\[
\mu^A_f(x) = \left[\iint_{R^{n+1}_t} \left(\frac{t}{t + |x - y|} \right)^n |F^A_t(f)(x,y)|^2 \frac{dydt}{t^{n+3}} \right]^{1/2},
\]
where
\[
F^A_t(f)(x) = \int_{|x - y| \leq t} \prod_{j=1}^l R_m(A_j; x,y) \frac{\Omega(x - y)}{|x - y|^n} \frac{\Omega(y - z)}{|y - z|^n} f(y) dy
\]
and
\[
F_t^A(f)(x,y) = \int_{|y - z| \leq t} \prod_{j=1}^l Q_j(A_j; y,z) \frac{\Omega(y - z)}{|y - z|^n} \frac{\Omega(y - z)}{|y - z|^n} f(z) dz;
\]
The variants of \(\mu^A_{\Omega} \), \(\mu^A_S \) and \(\mu^A_f \) are defined by
\[
\tilde{\mu}^A_{\Omega}(f)(x) = \left(\int_0^\infty |\tilde{F}^A_t(f)(x)|^2 \frac{dt}{t^n} \right)^{1/2},
\]
\[
\tilde{\mu}^A_S(f)(x) = \left[\iint_{\Gamma(x)} |\tilde{F}^A_t(f)(x,y)|^2 \frac{dydt}{t^{n+3}} \right]^{1/2},
\]
and
\[
\tilde{\mu}^A_f(x) = \left[\iint_{R^{n+1}_t} \left(\frac{t}{t + |x - y|} \right)^n |\tilde{F}^A_t(f)(x,y)|^2 \frac{dydt}{t^{n+3}} \right]^{1/2},
\]
where
\[
\tilde{F}^A_t(f)(x) = \int_{|x - y| \leq t} \prod_{j=1}^l Q_m(A_j; x,y) \frac{\Omega(x - y)}{|x - y|^n} \frac{\Omega(y - z)}{|y - z|^n} f(y) dy
\]
and
\[
\tilde{F}^A_t(f)(x,y) = \int_{|y - z| \leq t} \prod_{j=1}^l Q_j(A_j; y,z) \frac{\Omega(y - z)}{|y - z|^n} \frac{\Omega(y - z)}{|y - z|^n} f(z) dz.
\]
Set
\[
F_t(f)(x) = \int_{|x - y| \leq t} \frac{\Omega(x - y)}{|x - y|^n} f(y) dy;
\]
We also define that
\[
\mu_{\Omega}(f)(x) = \left(\int_0^\infty |F_t(f)(x)|^2 \frac{dt}{t^n} \right)^{1/2},
\]
\[
\mu_S(f)(x) = \left(\iint_{\Gamma(x)} |F_t(f)(y)|^2 \frac{dydt}{t^{n+3}} \right)^{1/2}.
\]
and
\[\mu_\lambda(f)(x) = \left(\int \int_{\mathbb{R}^{n+1}_+} \left(\frac{t}{t + |x - y|} \right)^{n\lambda} \left| F_t(f)(y) \right|^2 \frac{dydt}{t^{n+3}} \right)^{1/2}, \]
which are the Marcinkiewicz operators (see [18]). Let \(H \) be the space
\[H = \left\{ h : \|h\| = \left(\int_{\mathbb{R}^n} |h(t)|^2 \frac{dt}{t^3} \right)^{1/2} < \infty \right\}, \]
or
\[H = \left\{ h : \|h\| = \left(\int \int_{\mathbb{R}^{n+1}_+} |h(y, t)|^2 \frac{dydt}{t^{n+3}} \right)^{1/2} < \infty \right\}. \]
Then, it is clear that
\[\mu^A_\Omega(f)(x) = ||F^A_t(f)(x)||, \quad \mu^A_S(f)(x) = ||\chi_{\Gamma(x)}F^A_t(f)(x, y)||, \quad \mu^A_\lambda(f)(x) = \left(\int \int_{\mathbb{R}^{n+1}_+} \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} \left| F^A_t(f)(x, y) \right|^2 \frac{dydt}{t^{n+3}} \right)^{1/2}, \]
\[\mu^A_\lambda(f)(x) = \left(\int \int_{\mathbb{R}^{n+1}_+} \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} \left| F_t(f)(y) \right|^2 \frac{dydt}{t^{n+3}} \right)^{1/2}, \]
and
\[\mu^A_\lambda(f)(x) = \left(\int \int_{\mathbb{R}^{n+1}_+} \left(\frac{t}{t + |x - y|} \right)^{n\lambda/2} \left| \chi_{\Gamma(x)}F^A_t(f)(x, y) \right|^2 \frac{dydt}{t^{n+3}} \right)^{1/2}. \]
It is easily to see that \(\mu_Q, \mu_S \) and \(\mu_\lambda \) satisfy the conditions of Theorem 1, 2, 3 and 4, thus Theorem 1, 2, 3 and 4 hold for \(\mu^A_\Omega, \mu^A_S, \mu^A_\lambda, \tilde{\mu}^A_\Omega, \tilde{\mu}^A_S, \tilde{\mu}^A_\lambda \).

References

Department of Mathematics
Changsha University of Science and Technology
Changsha 410077, P. R. China
E-mail address: lanzheliu@163.com