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ON CLASSES OF MORPHISMS CLOSED UNDER LIMITS

GEUN BN Im AND G.M. KEeLLy

1. Introduction

When we say below that a full subcategory ¢ of a category £ is
closed under limits we mean that, whenever a functor F : £—¥ is such
that the composite K—%—& admits a limit (ag : A—=FK) in &, then
the object A=Ilim F itself lies in ¥; so that ¢ is necessarily a replete
full subcategory of &.

It should cause no confusion if we use the phrase “closed under limits”
in another but related way. We say that a class .# of morphisms in a
category &/ is closed under limits if, whenever F,G : X—s/ are functors
that admit limits, and whenever 9 : F—G is a natural transformation
each of whose components g : FK—GK lies in .#, then the induced
morphism lim % : lim F—lim G also lies in 4. If we also use .# to
denote that full subcategory of &2 (the category of morphisms in & and
commutative squares) whose objects are the elements of .#, then to say
that .# is closed under limits in &/ is to say that the full subcategory .4
is closed in &2, in the sense of the preceding paragraph, not in general
under all limits, but under all pointwise limits~which are the only ones
of interest in a functor category. This is of course a fortiori the case
when the subcategory .# is replete and reflective in /2.

More generally, we may speak similarly of the class 4 as being
closed, not under all limits, but under some class of limits, such as small
ones, or finite ones, and so on. This leads us to warn against a danger
of misunderstanding. Sometimes we wish to say that every pullback in
& of a morphism in .# itself lies in .#;we can express this property by
saying that .# is stable under pullbacks; but we cannot, like some auth-
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ors, express it by saying that e//{ is cIosed under pullbacks”-since, for
us, this last has quite a different meaning.

The aim of the present article is to observe that any class .# of mor-
phisms which contains the identities and is closed wunder limits necess-
arily enjoys a large number of other closure properties. This observation
seems to be new; for many authors, even recent ones, and even those
who have explicitly noted the closedness under limits of their class .#,
have provided independent proofs of a variety of these other closure
properties, which are in fact consequences. See for example Kelly [4],
Section 3 of Ringel [7], Freyd-Kelly [2], Bousfield {17, MacDonald-
Tholen [6], and Tholen [8], among others. The last two authors have
in fact shown some-of these further closure properties to follow from
the stronger hypothesis that .#, besides containing the identities, is re-
plete and reflective in /2. It should be pointed out that not even this
stronger hypothesis implies that .# is closed under composition. -

On the case where .# is reflective in &%, and on the case where .#
is closed under composition, we have not very much to add to the res-
ults in the articles of MacDonald and Tholen above. Not to say some-
thing on these, however, would leave the reader without a clear view
of the situation. Accordingly we take the opportunity, in the final two
sections below, to include some comments on these cases which go a little
beyond those of these authors, as well as making explicit some ideas
that are only implicit in their articles, or are divided between their two
articles and not wholly contained in either. -

2. Some consequences of closedness under limits and identities

We give some names to certain closure propertles of a class M of
morphisms of .
M 1. .# contains all identities.

M 2. 4 is closed under limits.

M 3. Any retract in &2 of an 4 is an 4.

M 4. Any isomorph in #2 of an ./ is an .4; equxvalently,,/// is replete
in &2, or umv<E.# whenever mE.# and u,v are invertible.

M 5. If fre# and r is a retraction, then f e,,#

M 6. .# contains all the isomorphisms.

M7 I fmged, fmed, and me. A, then mgeA.
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M8 If fec# and fE4, then ge.4.

M9 If med, g4, and m is a coretraction, then mge.#.

M10. Let & have a terminal object 1, and write #x : K—1 for the
unique map. If F : X—« has a limit (ax: A—FK), and if
Ftxe 4 for each K, then axs.# for each K.

M1l. If a family (m;: B;~C);e; with each m;E .4 admits a fibred
product

B,

2.1

A C,

then he.# and each g;=.4.

M12. If, in a fibred product (2.1), we have m;E.# for every i ex-
cept for one value i=0&I, then go=.#.

M13. Every pullback of an .# is an .#.

M14. If fg=# and f is monomorphic, then gE.4.

We begin with some simple observations.

LEMMA 2.1. M3 contains M4 and M5 as special cases, while either
M4 or M5 implies M6 in the presence of M1.

Proof. The only non-trivial observation needed is that, in the circum-
stances of M5, if ri=1, the equation

f‘ {f

T
<
I

/

exhibits f as a retract in &2 of fr.

LEMMA 2.2. M7 contains M8 and M9 as special cases in the presence
of MI.

Proof. For M8, take m=1 in M7. For M9, so choose f in M7 that
fm=1.

LEMMA 2.3. MI11 is a special case of M10.
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LEMMA 2.4. M13 is the special case I=2 of M12, while M14 is a
special case of M13. _ :
Proof. For the latter statement, observe that

L

l

fg

is a pullback if f is monomorphic.

THEOREM 2.5. M2, even stated for finite limits only, implies M3
and M7 ;while M1 and M2 together imply M10 and M12 (with M2 be-
ing required only for small limits, or only for finite ones, if the cate-
gory K or the set I is small or finite). Hence M1 and M2 together im-
ply M3-M14.

Proof. In the case of M3 we are contemplating the situation

1.0 rg

AL
|

0 1
where roiy=1, ri;=1, and mE.#. Writing { for the map (i, i;) of
&% and so on, we have in /2 the pointwise equalizer

i ir

f~—’m——>m,

so that f€.# by M2. For M7 we consider a diagram
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since the top and bottom squares are pullbacks, M2 gives mg< .#from
the hypotheses of M7. Turning to M10, we consider the functor 4(F1) :
K—f constant at F1; since X is connected, its limit is F1, the limit—
cone having generators 1 : F1—»F1. The Ftx are the components of a
natural transformation 7 : F—»4(F1), with each 7k in 4 by hypothesis.
Clearly lim 5 : A—F1is a;; so that a; .4 by M2. Since ay=Fig - ag,
it follows from M8 that aKEJ. Passing finally to M12, we consider

/ixc
/

—-—m

A

&} . J 1
D; I

\ :
where, for i#0, D;=C, k=m;, t-———l and s;=my;while Dy=B,, k=
1, to=my, and sg=1. Since the bottom like the top is a fibred product,
M1 and M2 give g,&.4.

B,

3. Closure under limits when .# admits pullbacks

It is instructive to observe that, when & admits pullbacks and .#
contains the identities, there is an alternative way of expressing the closed-

ness of .# under limits, in terms of the categories .#//A of objects over
A for A=y

We consider limits in &//A. For any &£ we write 4A : X—« for the
functor constant at A, and we write &£* for the category obtained from
X by adding a new terminal object 1. To give a functor @ : £—s//A is
equally to give a functor H : X—</ and a natural transformation 1 : H—
4A, which in turn is equally to give a functor &+ : X*—. with 9+ (1)
=A. To give a (projective) cone over ® with vertex n: B—A is to
give a cone «a : 4B—H in & satisfying

a
AB ~ H

3.1
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which is equally to give a cone (a,n) : AB—®* in &. It is clear that:

LEMMA 3.1. a exhibits n as the limit of O= (H,R) : X—/A if and
only if (a,n) exhibits B as the limit of ®F : K*—.

Suppose now that &/ admits pullbacks, and consider a natural trans-
formation 7 : F—G : X—«/, where F and G admit limits p : 4B—F and
0 : 4A—G, while 7 induces n=lim % : B—A. Form in the functor cate-
gory [XK,s/] the pullback H of % and o, and let @ be the unique map
rendering commutative

o
B >~
\ /

H M

a
An 7
' 3.2)

AA G

The reader will easily verify that:

LEMMA 3.2. @ expresses n as the limit of &= (H, ) : X—A/A.

The result we desire is:

PROPOSITION 3.3. Let o admit pullbacks and let the class M of mor-
phisms contain the identities. Then M is closed under limits if and only
if M is stable under pullbacks and, for each A€, the full subcategory
MIA of A]A, determined by those m : C—A with mE M, is closed under
limits in S/ A.

Proof. If A is closed under limits it is stable under pullbacks by the

M13 part of Theorem 2.5; while if &= (H, ) : X—s// A takes it values
in A#/A, and has limit n as in (3.1), we have A=.# (componentwise) ;
whence we deduce n€.# by Lemma 3.1 and the M10 part of Theorem
2.5 applied to &+ : £*—«. For the converse, if .4 (componentwise)
in (3.2), we have A=.# by the stability hypothesis and then nE=.# by
the other hypothesis and Lemma 3. 2.

4. Examples of families of morphisms closed under limits

PROPOSITION 4.1. The monomorphisms are closed under limits and con-
tain the identities; they are also closed under composition.



On classes of morphisms closed under limits 7

Recall from [4] that j: A—B is called a regular monomorphism if it
is the joint equalizer of some family (not necessarily small) of pairs z;,
y; : B—C;. It comes to the same thing to say that j is the joint equali-
zer of the family of all pairs z,y : B-C,, satisfying zj=yj. By an
equalizer we mean a morphism j that is the equalizer of a single pair
z,y : B—C; thus every equalizer (and so, in particular, every coretrac-
tion) is a regular monomorphism. On the other hand every regular mo-
nomorphism j is an equalizer if ./ admits pushouts; for then j is the
equalizer of the pair x, y arising from the pushout of j by itself. As is

well known, regular monomorphisms are not in general closed under
composition.

PROPOSITION 4.2. The regular monomorphisms contain the identities
and are closed under limits.
Proof. Consider the diagram

B B, GK
where the top and the bottom are limits of  and of G, and the com-

ponents 7x of 7 : F—»G are regular monomorphisms. Suppose that 7g is
the joint equalizer of the family

(‘T(K3 l) » y(Ka 2) : GK_)H(K, l)) iEIK;
then 2 is in fact the joint equalizer of the family

GK (K, ) )
g :H K;’ Ky 1€ s
ISK y(K,z') ( KX Ig

as the reader will easily verify.

(B

Recall from [2] the notion of a prefactorization system. For morph-
isms p and j, we write p | j if, whenever we have a commutative squ-
are ju=uvp, there is a unique “diagonal’ w satisfying wp=u and jw=
». For any class ./ of morphisms we write A for {j|p |j for all pE
A} and 4" for{plplj for all jEN}. A prefactorization system is a
pair &,.# of classes of morphisms such that §=.4" and #=%"*; and
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any class & gives rise to such a prefactorlzatxon system on setting A=
N4 and E=.4'=A". Many closure properties of a class defined by
M=H" were given in [2], but it was Bousfield [1] Who first pomted
out that such an A is cIosed under limits. =~

There is a generahzanon of thlS notion due to Tholen; see for ins-
tance [8]. F&lowmg Tholen, define a factorization to be a pair (p, ),
where p is a family ( pi Xi—Y)erp» of morphisms and 2: Y—>Z isa
morphism; the ‘idea.is that (p,%) can be seen as a “factorization” of
the family (%p; : X,»Z). For a morphism m : A—B write (p,k) Ilm
if, for all #;, v rendering commutative the exterior of

A k
X — ¥ : > Z
Pd

U -

7 o (4.1)

4 > B,

there is a unique w as shown rendering the square and the triangles
commutative. If & is any class of factorizations, we set F*={m| (p, k)
lm for all (p,k) €. If we identify a factorization (p,1ly) with the
family :p=(p; : X; ;—Y), and identify a one-object family with a mor-
phism p : XY, it is clear that our definition of F' ‘contains as a 1 sp-
ecial case that of /' ahove.

The reader will have no diﬂicufty in verifying hthe following result of
Tholen [8] (see his Proposition 1.1 on page 66 and Proposition 2.1 on
page 68):

PROPOSITION 4.3. For anj;" class F of factorizations, the class M =F*
of morphisms contains the identities and is closed under limits. If every
(p, k) €EF has k an identity, H# is also closed under composition. This
last is so in particular z'f & reduces as above to a class N of morphisms.

" Recall from [4] that the class of strong monomor phisms is the inter-
section’ of A' with the monomorphlsms, where 4 is the class of epi-
morphisms; it is' accordingly closed under limits and composition, as well
as containing the identities. (In this case, it is shown in [2] that 4!
is “already contained in the monomorphisms™if &/ -admits pullbacks or
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binary coproducts, it is also clearly so if &/ admn‘s coequahzers)

If we take for ¥ the class of all (p, ].y) where p (p, X—»Y) isa
jointly epimorphic family, we call the intersection of &' with the mo-
nomorphisms the class of familially strong monomorphisms; * clearly it
too has the closure properties above. It is of course contained in the
class of strong monomorphisms: we examine in the forthcoming [3]

cases where these two classes comc1de For the moment We merely obs-
erve that: o L

PROPOSITION 4.4. Every regular monomorphzsm is famzlzally strong.

Proof. In (4. 1 let 2=1{(p;) be jointly epimorphic, let =1y, and let
m be a regular ‘monomorphism. Then zm=ym g1ves zvp;=yvp; for each
i, whence zv=yv. So v=mw for some unique w, and moreover wp;,=
u; since m is monomorphlc

We give no concrete example here of an F* where the n,HeF do
not all have % invertible; but Proposition 5.7 below shows that any .#
containing the identities and replete and reflective in &2 is &' for a class
F of factorizations-indeed of factorizations of single morphisms, rather
than of families. In any reasonable . the regular monpmorphisms form
such a class .# (see Example 6.3 below), butf are not: usually closed
under composition: so that here the (z,k) €F do not have % invertible.

5. Reflexions of morphisms into ¢
PROPOSITION 5.1. Let M4 be a class of morphisms in o that contains

the identities, identified with a full si’t’b’éa‘teéory of 2. If an object f :
A—B of #? admits a reflexion

A f 2
i :

mto M, then z is mvertzble

' Proof Smce 1B€M and (5. 1) is the reﬂean, there are. .z, y suc.h
that . :
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f
A——B = A———B
o | | |
C———D f 1
m
"l ly B———B . (5.2
B———B 1
1
Composing with (z,z) : 13—1p and using (5.1) gives
f
A————B = A——>B = A——B
o || a =
€——D  f] 1 C——D
N E "
z y J
B———>B B———B m | {1
S
D————D D——>D D——D . (5.3)
1 1 1

Now we have yz=1 by (5.2), while zy=1 by (5.3) and the unique-
ness clause in the definition of a reflexion.

COROLLARY 5.2. When #, besides containing the identities, is replete

in 2, the reflexion into M of any f : A—B can be taken to be of the
Jorm

f
T
1
I
C———B . (5.4)
m

REMARK 5.3. For the rest of this section we suppose that 4 is a class
of morphisms containing the identities and replete in /2, and we write
& for the class M of morphisms. Departing somewhat from the langu-
age of Tholen [8], we call (g,m) an A -factorization of f if f=mq
with me.# and if (¢,1) : f—m is, as in (5.4), a reflexion of fEeu?
into .#. Such an .#-factorization of f, if it exists, is of course unique
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up.to the replacement of C by an isomorph. The universal property
asserting that (5.4) is a reflexion of f into .# can be expressed as foll-
ows: f=mq with me&.#, and whenever nu=yf with nc.4, we have
a unique w rendering commutative

/

b
\(//1
~Y..

X

n

In other words, f=mq with me.# and (¢,m) | n for all nc.#. To say
that every f admits an .#—factorization, or that .#~factorizations exist,
is of course to say that .# is reflective in .#2. When this is the case,
the result of Proposition 5.1 is given in MacDonald-Tholen [6] (Prop-
osition 1.3, page 178). '

It is not in general the case that the .#—factorization (¢, m) of f has
g<&; we shall see in Proposition 5.9 below that this is so for all f

precisely when .# is closed under composition. Yet in the other direction
we do have the trivial result:

PROPOSITION 5.4. If f=mq with mE . and q<&, then (q,m) is an
M —factorization of f.

PROPOSITION 5.5. For f: A—B the following are equivalent:
(i) fed;
(ii) f has the M —factorization (14, f);
(iii) f has an M~factorization (q,m) with g invertible;
(iv) f has an M~factorization (q,m) and there exists a t rendering
commutative

q
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Proof. Obviously (i)= (ii)= (iii)=>(iv). Given (iv), we have com-
mutativity in

A ! > C = -5
| / ll
C — B 2
m
whence gt=1 by the uniqueness of w in (5.5). Thus ¢ is invertible,
and fe 4.

PROPOQSITION 5.6. For f: A—B the following are equivalent:
@) f€é;
(ii) f has the A -factorization (f,1p);
(ii1) f has an M~factorization (g, m) with m invertible;
(iv) f has an M—factorization (q,m) and there ezists an s rendering

commutative
A ! > B
q / \ |
c » I

—p

m

Proof. Obviously (1)= (ii) = (iii)) > (iv). Given (iv), we have com-

mutativity in
B
l 1
B [

A q L m
q /
C
m

whence sm=1 by the uniqueness of w in (5.5). Thus m is invertible;
from which it follows easily that f<é.

4

S
>
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We can now give a “partial converse” to Proposition 4. 3:

PROPOSITION 5.7. If M is reflective in o2, then M =F' where F is
the class of all M —factorizations of morphisms.

Proof. We have 43 by Remark 5.3. Let feF and let £ have
the .#—factorization (g,m). Then there is a t rendering commutative

A

K . 0 m — s B
| f 1

B

o}

whence f€.# by Propositon 5. 5.

Turning to the case where &/ admits pullbacks, we prove an analogue
of Proposition 3. 3:

PROPOSITION 5.8. If f: A—B admits an #~factorization f= (q, m),
then g : fom is a reflexion of fEX /B into 4 /B. Conversely, if o ad-
mits pullbacks and M is stable under pullbacks, and if q : f—m is a re-
flexion of fE//B into M |B, then (q,m) is an M-factorization of f.

Proof. The first assertion is trivial; for if f=nu with n&.#, the ex-
istence of a unique z rendering commutative

is a special case of the universal property (5.5). For the other direction
we consider n€.# and u,v as in (5.5) with aw=vmgq, and construct

X
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where D is the pullback of » and v, ¢ is the unique morphism with ré=
mg and-st=u, and z is the unique morphism with zg=¢ and rz=m,
which exists by hypothesis since r&.#. To obtain the universal property
(5.5), it remains to show that any w : C—X with wg=u and nw=vm
is ini fact sz.” Given such a w there is, since D is the pullback, some
y: C—D with sy=w and ry=m. Now wg=u gives syg=u, while ryg
=mq; whence, since D is the pullback, yg=¢. This, along with ry=
m, gives y=gz, so that w=sy=sz.

The following results on the special case where .# is closed under
composition are contained partly in [6] (Proposition 2.1, page 68) and
partly in [8] (Proposition 1.2, page 177), and we do no more than
organize them for the reader’s convenience.

PROEOSITION 5 9. When M~factorizations exist the following are

equzvalent S ' »

(i) Every .#-factorization (g, m) has q<&.

(ii) Every M—factorization (g, m) with gEM has g invertible.
(iii) A is closed under-composition.

Proof. (i) implies (ii) since it is trivial (see [2] Proposition 2.1.2,
page 173) that .# (1&=.# 4" consists of isomorphisms. To see that
(i) implies iii), let (¢, m) be the #~factorization of nk where n, ke.//{
and let ¢ be the unique morphism rendermg commutative

\B
/l

The M8 part of Theorem 2.5 gives t=.# since n,mc.#, and then
gE M since t,kS.A. So g is invertible by (ii), whence nk=mgE.4.
To see that (iii) implies (i), suppose that the ¢ of (i) has the #-
factorization (r,=z). Since mnE.# by (iii)), we have an s rendering
commutative '

\/\

D

n
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q9 m
—» + B

D > C > B;
but now the uniqueness of w in (5.5) gives as=1, whence ¢g<& by
Proposition 5. 6.

Recall from [2] that a factorization system on & consists of two classes
&, .4 of morphisms, each containing the identities and closed under com-
position, such that ¢ ] m whenever ec& and me<.#, and such that
(€, .#) factorizations exist, in the sense that every morphism f admits
a factorization f=me with m.# and e¢=&. Recall further from [2]
that every factorization system (&,.#) is a prefactorization system, and
that a prefactorization system (&,.#) is a factorization system precisely
when (&, .#) factorizations exist.

THEOREM 5.10. Let .4 be any class of morphisms in &/, and set &=

M. Then the following are equivalment.

(i) (&,.4) is a factorization system.

(ii) A is a replete reflective subcategory of % containing the identities
and closed under composition.

Proof. Given (1), .#=&"' contains the identities, is replete in &2,
and is closed under composition, by Proposition 4.3 and the M4 part
of Theorem 2.5. If f=me with me.# and ecé&, clearly (e,m) s an
M~factorization of f, so that .4 is reflective. Given (ii), .# is closed
under composition and contains the isomorphisms by hypothesis, while
the same is true of E=.4" by (the dual of) Proposition 4. 3 and the M6
part of Theorem 2.5. Trivially e | m whenever e€& and me.# since
E=.4". By Proposition 5.9, the .#—factorization (q,m) of any mor-
phism f has ¢€&. Hence (&,.#) is a factorization system.

6. Examples of reflective .#, and remarks

ExampLgE 6.1. The authors of [6] consider the example where & is
the category of categories and right-adjoint functors, while .# is the
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class of monadic functors. -If ¢ is the monad on B derived from the right
adjoint f : A—B, let B* be the category of algebras, : B*—B the
forgetful functor, and ¢ : A—B¢ the comparison functor; then (g, m) is
an .#-factorization of f if A and Bt admit coequalizers. If we restrict
& to consist of cocomplete categories and right adjoints with rank, then
all .#~factorizations exist. Here .# is not closed under composition, and
does not consist of monomorphisms.

EXAMPLE 6.2. When .#, containing the identities and replete in &2,
does consist of monomorphisms, it is certainly reflective in &2 if pull-
backs. of .#’s and arbitrary (even large) intersections of #’s exist, and
these again lie in.#; for by Proposition 5.8 we have only to- give a
reflexion of f : A—B into .#/B, and we find this as the intersection
m:C—B of those n: D—B in M through which f factorizes. This is
Theorem 2.4 of Tholen [8], who points out that even _more is true:
in this case any family (f;: A;—B) has an .#-factorization (g;,m),
the extension of the notion of .#—factorization to families being the ob-
vious one. When .# does not consist of monomorphisms, the hypothesis
that arbitrary fibred products of .#’s exist cannot hold: see Section 1.3
of [5]. For results on the reflectivity of an .# not consisting of mono-
morphisms, see Tholen [8].

-EXAMPLE 6.3. In particular, by Proposition 4.2 and Theorem 2.5,
the class .# of regular monomorphisms is reflective in %2 if & admits
pullbacks and arbitrary intersections of regular monomorphisms. However
it is not clear that the H—factorization (g,m) of a morphism f is then
what was called in [4] (in the dual case). the regular factorization of
f- The latter was defined as a pair (g, m) with f=mq such that m .is
the joint equahzer of all pairs z,y with zf=yf. The reader will easily
verify (this is Example 2.1 of [6]) that a regular factorization is always
an .#—factorization, while an .#~factorization is a regular factorization
if &/ admits equalizers. But then we do not need pullbacks in./: by
[4] (Proposition 4.2 on page 134), if &/ admits equalizers, . regular
factorizations exist if &/ admits either arbxtrary intersections of regular
monomorphisms or else pushouts.. . = : - -

- REMARK 6.4. The most classical examples of a reflective .# are-given
as in Theorem 5.10 by a factorization system.
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REMARK 6.5. The authors of [6] consider transfinite iteration of .#-
factorizations, where .# contains the identities and is replete and refle-
ctive in &2, but do not go beyond small ordinals. When .# consists of
monomorphisms [resp. strong monomorphisms] and ./ admits all inters-
ections of monomorphisms [resp. strong monomorphisms] we. can carry
this process to its limit and arrive at a factorization system: -Beginning
with the .#-factorization f=mg=mngqy of f, we define inductively a
factorization f=mn.q, for each ordinal a; if a=pg+1 we take the .#~
factorization gg=myg, of g and set m,=ngmg; if @ is a limit-ordinal
we set m,= () ,<.p, With the obvious g,. If we suppose every category
to be small with respect to some universe, this process ultimately term-
inates; which means that m, is invertible for some B, and hence by
Proposition 5.6 that ggs&&. By Proposition 4.3 and Theorem 2.5, we
have nge=&*. Thus the prefactorization system (&, &)= (A", AY) is
actually a factorization system. When .# consists of the regular mono-
morphisms and &/ admits equalizers, this gives (see [4], Proposition
3.9 on page 133) the factorization of f into “an- epimorphism3 followed
by a strong monomorphism.
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